Publications

Publications


Google Scholar Citation Report
(All downloadable materials on this webpage are available for personal use only, and in accordance with the copyright laws that apply)

Books: 

  • James Benford, Edl Schamiloglu, Jacob Coty Stephens, John A. Swegle, Peng Zhang, High Power Microwaves, 4th Edition (CRC Press, Abingdon, Oxon; Boca Raton, FL, 2025).

 Journal Articles: 

  1. J. Stephens, and Peng Zhang, “Guest Editorial – Special Issue on Plenary, Invited, and Selected Minicourse Papers From ICOPS 2023“, IEEE Trans. Plasma Sci., 52, 1081 (2024).
  2. D. Wen, J. Krek, J. Gudmundsson, E. Kawamura, M. Lieberman, Peng Zhang, and J. Verboncoeur, “Field reversal in low pressure, unmagnetized radio frequency capacitively coupled argon plasma discharges“, Appl. Phys. Lett. 123, 264102 (2023).
  3. A. Iqbal, D. Wen, J. Verboncoeur, and Peng Zhang, “Recent advances in multipactor physics and mitigation“, High Voltage. 8, 1095 (2023). [Invited Article]
  4. Y. Zhou, and Peng Zhang, “Tuning quantum pathway interference in two-color laser photoemission using DC bias“, New J. Phys. 25, 113027 (2023).
  5. A. Iqbal, D. Wen, J. Verboncoeur and Peng Zhang, “Two surface multipactor with non-sinusoidal RF fields“, J. Appl. Phys. 134, 153304 (2023).
  6. A. Iqbal, B. Bentz, Y. Zhou, K. Youngman and Peng Zhang, “Pulsed photoemission induced plasma Breakdown“, J. Phys. D: Appl. Phys. 56, 505204 (2023).
  7. S. Lin, H. Zhong, C. Chen, M. Cao, Y. Li, Y. Zhai, P. Wong, Peng Zhang, and J. Verboncoeur, “Effect analysis of spatial discrepancy of secondary emission yield on multipactor formation“, Phys. Plasmas 30, 103102 (2023).
  8. J. Browning, N. Jordan, J. Stephens, and Peng Zhang, “Guest Editorial The Nineteenth Special Issue on High-Power Microwave and Millimeter-Wave Generation“, IEEE Trans. Plasma Sci., 51, 1839 (2023).
  9. L. Jin, Y. Zhou, and Peng Zhang, “Direct density modulation of photo-assisted field emission from an RF cold cathode“, J. Appl. Phys. 134, 074904 (2023).
  10. C. Lin, J. Chen, A. Iqbal, Peng Zhang, and Y. Fu, “Dimensional analysis on microscale gas breakdown with electric field nonuniformity and positive space charge effects“, J. Appl. Phys. 134, 053301 (2023). [Editor’s Pick]
  11. Y. Zhou, R. Ahsan, H. Chae, R. Kapadia, and Peng Zhang, “Theoretical Analysis of Resonant Tunneling Enhanced Field Emission“, Phys. Rev. Applied 20, 014043 (2023).
  12. D. Wen, J. Krek, J. Gudmundsson, E. Kawamura, M. A. Lieberman, Peng Zhang, and J. Verboncoeur, “On the importance of excited state species in low pressure capacitively coupled plasma argon discharges“, Plasma Sources Sci. Technol. 32, 064001 (2023).[Most Read]
  13. M. A. Faisal, and Peng Zhang, “Grating Optimization for Smith–Purcell Radiation: Direct Correlation Between Spatial Growth Rate and Starting Current“, IEEE Trans. Electron Devices 70, 2860 (2023).
  14. S. Lin, H. Qu, N. Xia, P. Wong, Peng Zhang, J. Verboncoeur, M. Cao, Y. Zhai, Y. Li, and H. Wang, “Quantitative analysis of multipactor threshold sensitivity to secondary emission yield of microwave devices“, Phys. Plasmas 30, 033104 (2023).
  15. A. Iqbal, D. Wozniak, M. Rahman, S. Banerjee, J. Verboncoeur, Peng Zhang, and C. Jiang, “Influence of discharge polarity on streamer breakdown criterion of ambient air in a non-uniform electric field“, J. Phys. D: Appl. Phys. 56, 035204 (2022).
  16. D. Wen, A. Iqbal, Peng Zhang, J. Verboncoeur, “Susceptibility of multipactor discharges near a dielectric driven by a Gaussian-type transverse rf electric field“, Appl. Phys. Lett. 121, 164103 (2022).
  17. S. Lin, H. Qu, P. Wong, Peng Zhang, J. Verboncoeur, H. Zhong, Y. Zhai, M. Cao, H. Wang, and Y. Li, “Effect analysis of angular momentum on coaxial multipactor with 1D3V statistical modeling“, Phys. Plasmas 29, 103105 (2022).
  18. D. Wen, Peng Zhang, J. Krek, Y. Fu and J. Verboncoeur, “Parametric studies of stream instability-induced higher harmonics in plasma ionization breakdown near an emissive dielectric surface“, Plasma Sources Sci. Technol. 31, 095004 (2022).
  19. M. Mirmozafari, A. Iqbal, Peng Zhang, N. Behdad, J. Booske, and J. Verboncoeur, “Secondary electron yield characterization of high porosity surfaces for multipactor-free microwave components“, Phys. Plasmas 29, 082109 (2022).
  20. S. Banerjee, and Peng Zhang, “Scaling of Time-Dependent Tunneling Current in Terahertz Scanning Tunneling Microscopes“, Phys. Rev. Applied 18, 024011 (2022).
  21. Y. Zhou, and Peng Zhang, “Unraveling quantum pathways interference in two-color coherent control of photoemission with bias voltages“, Phys. Rev. B. 106, 085402 (2022).
  22. D. Wen, Peng Zhang, J. Krek, Y. Fu, and J. Verboncoeur, “Higher Harmonics in Multipactor Induced Plasma Ionization Breakdown near a Dielectric Surface“, Phys. Rev. Lett., 129, 045001 (2022).
  23. J. Browning, N. M. Jordan, J. Stephens, and Peng Zhang, “ANNOUNCEMENT The Nineteenth Special Issue on High-Power Microwave and Millimeter-Wave Generation“, IEEE Trans. Plasma Sci., 50, 1378 (2022).
  24. S. Banerjee and Peng Zhang, “Review of recent studies on nanoscale electrical junctions and contacts: Quantum tunneling, current crowding, and interface engineering“, J. Vac. Sci. Technol. A 40, 030802 (2022). [Invited Paper][Featured Article]
  25. Peng Zhang, P. Wong, Y. Zhou, J. D. Albrecht, M. Hodek, and D. Smithe”Space charge waves in a two-dimensional electron gas“, J. Appl. Phys. 131, 144302 (2022).
  26. Y. Luo and Peng Zhang, “Optical-field-induced Electron Emission in a dc-Biased Nanogap“, Phys. Rev. Applied 17, 044008 (2022).
  27. Y. Zhou and Peng Zhang, “Theory of laser-induced photoemission from a metal surface with nanoscale dielectric coating“, J. Appl. Phys. 131, 064903 (2022).
  28. A. Iqbal, J. Verboncoeur, and Peng Zhang, “Two surface multipactor discharge with two-frequency rf fields and space-charge effects“, Phys. Plasmas 29, 012102 (2022).
  29. D. Wen, Peng Zhang, J. Krek, Y. Fu, and J. P. Verboncoeur, “Observation of multilayer-structured discharge in plasma ionization breakdown“, Appl. Phys. Lett. 119, 264102 (2021).
  30. A. Iqbal, P. Wong, D. Wen, J. Verboncoeur, and Peng Zhang, “A Review of Recent Studies on Two-Frequency RF Field-Induced Single-Surface Multipactor Discharge“, IEEE Trans. Plasma Sci., 49, 3284 (2021).[Invited Paper]
  31. Y. Luo and Peng Zhang, “Ultrafast optical-field-induced photoelectron emission in a vacuum nanoscale gap: An exact analytical formulation“, Appl. Phys. Lett. 119, 194101 (2021).[Featured Article]
  32. Y. Fu, H. Wang, B. Zheng, Peng Zhang, Q. Fan, X. Wang, and J. Verboncoeur, “Generalizing Similarity Laws for Radio-Frequency Discharge Plasmas across Nonlinear Transition Regimes“, Phys. Rev. Applied 16, 054016 (2021).
  33. Y. Zhou and Peng Zhang, “Quantum efficiency of photoemission from biased metal surfaces with laser wavelengths from UV to NIR“, J. Appl. Phys. 130, 064902 (2021).[Featured Article][Scilight][News Reports at MSUTodayPhys.org]
  34. S. Banerjee, J. Luginsland, and Peng Zhang, “Interface Engineering of Electrical Contacts“, Phys. Rev. Applied 15, 064048 (2021).[MSUDaily Update][News Report at MSUToday]
  35. Y. Fu, H. Wang, B. Zheng, Peng Zhang, Q. Fan, X. Wang, and J. Verboncoeur, “Direct current microplasma formation around microstructure arrays“, Appl. Phys. Lett. 118, 174101 (2021).
  36. Peng Zhang, Y. S. Ang, A. L. Garner, A. Valfells, J. W. Luginsland, and L. K. Ang, “Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects“, J. Appl. Phys. 129, 100902 (2021). [Featured Article]
  37. Y. Luo, Y. Zhou, and Peng Zhang, “Few-cycle optical-field-induced photoemission from biased surfaces: An exact quantum theory“, Phys. Rev. B 103, 085410 (2021).
  38. Y. Fu, B. Zheng, Peng Zhang, Q. Fan, and J. P. Verboncoeur, “Transition characteristics and electron kinetics in microhollow cathode discharges“, J. Appl. Phys. 129, 023302 (2021).
  39. Y. Zhou, and Peng Zhang, “Theory of field emission from dielectric coated surfaces“, Phys. Rev. Research 2, 043439 (2020).
  40. S. Sun, X. Sun, D. Bartles, E. Wozniak, J. Williams, Peng Zhang, and C.-Y. Ruan, “Direct imaging of plasma waves using ultrafast electron microscopy“, Struct. Dyn. 7, 064301 (2020).
  41. Y. Fu, B. Zheng, D. Wen, Peng Zhang, Q. Fan, J. P. Verboncoeur, “Similarity law and frequency scaling in low-pressure capacitive radio frequency plasmas“, Appl. Phys. Lett. 117, 204101 (2020).
  42. Y. Fu, B. Zheng, Peng Zhang, Q. Fan, J. P. Verboncoeur, and X. Wang, “Similarity of capacitive radio-frequency discharges in nonlocal regimes“, Phys. Plasmas 27, 113501 (2020).
  43. Y. Fu, B. Zheng, D. Wen, Peng Zhang, Q. Fan, and J. Verboncoeur, “High-energy ballistic electrons in low-pressure radio-frequency plasmas“, Plasma Sources Sci. Technol. 29, 09LT01 (2020).
  44. A. Iqbal, P. Y. Wong, D. Wen, S. Lin, J. Verboncoeur, and Peng Zhang, “Time-dependent physics of single-surface multipactor discharge with two carrier frequencies“, Phys. Rev. E 102, 043201 (2020).
  45. P. Yang, S. Banerjee, W. Kuang, Y. Ding, Q. Ma, and Peng Zhang, “Current crowding and spreading resistance of electrical contacts with irregular contact edges“, J. Phys. D: Appl. Phys., 53, 485303 (2020).
  46. X. Xiong, Y. Zhou, Y. Luo, X. Li, M. Bosman, L. K. Ang, Peng Zhang, and L. Wu, “Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings“, ACS Nano, 14, 8806 − 8815 (2020).
  47. J. Ludwick, A. Iqbal, D. Gortat, J. D. Cook, M. Cahay, Peng Zhang, T. C. Back, S. Fairchild, M. Sparkes, and W. O’Neill, “Angular dependence of secondary electron yield from microporous gold surfaces“, J. Vac. Sci. Technol. B 38, 054001 (2020).
  48. Y. Luo, J. Luginsland, and Peng Zhang, “Interference modulation of photoemission from biased metal cathodes driven by two lasers of the same frequency“, AIP Advances 10, 075301 (2020).
  49. S. Banerjee, P. Y. Wong and Peng Zhang, “Contact resistance and current crowding in tunneling type circular nano-contacts“, J. Phys. D: Appl. Phys. 53, 355301 (2020).
  50. B. Hoff, W. Tang, R. Seviour, and Peng Zhang, “Guest Editorial – The Eighteenth Special Issue on High-Power Microwave and Millimeter-Wave Generation“, IEEE Trans. Plasma Sci., 48, 1858 (2020).
  51. P. Y. Wong, Peng Zhang, and J. P. Verboncoeur, “Harmonic Generation in Multipactor Discharges“, IEEE Trans. Plasma Sci., 48, 1959 (2020).
  52. A. Iqbal, P. Y. Wong, J. P. Verboncoeur, and Peng Zhang, “Frequency-Domain Analysis of Single-Surface Multipactor Discharge With Single- and Dual-Tone RF Electric Fields“, IEEE Trans. Plasma Sci., 48, 1950 (2020).
  53. S. Banerjee, L. Cao, Y. S. Ang, L. K. Ang, and Peng Zhang, “Reducing Contact Resistance in Two-Dimensional-Material-Based Electrical Contacts by Roughness Engineering“, Phys. Rev. Applied 13, 064021 (2020).
  54. P. Wong, Peng Zhang, and J. Luginsland, “Recent theory of traveling-wave tubes: a tutorial-review“, Plasma Res. Express 2, 023001 (2020). [Invited Tutorial Paper]
  55. Peng Zhang, S. S. Bulanov, D. Seipt, A. V. Arefiev, and A. G. R. Thomas, “Relativistic plasma physics in supercritical fields“, Phys. Plasmas 27, 050601 (2020). [Invited Perspective Article] [Featured Article][News Reports at Phys.orgScitech DailyNewswiseEurekAlert AAASAzoopticsScience DailyAIP Publihsing News, and Space Daily]
  56. Y. Zhou, and Peng Zhang, “A quantum model for photoemission from metal surfaces and its comparison with the three-step model and Fowler–DuBridge model“, J. Appl. Phys. 127, 164903 (2020). [Editor’s Pick]
  57. Y. Fu, Peng Zhang, J. P. Verboncoeur, and X. Wang, “Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art“, Plasma Res. Express 2, 013001 (2020). [Invited Tutorial Paper]
  58. A. Iqbal, J. Ludwick, S. Fairchild, M. Cahay, D. Gortat, M. Sparkes, W. O’Neill, T. C. Back, and Peng Zhang, “Empirical modeling and Monte Carlo simulation of secondary electron yield reduction of laser drilled microporous gold surfaces“, J. Vac. Sci. Technol. B 38, 013801 (2020).
  59. D. Wen, Peng Zhang, Y. Fu, J. Krek, and J. P. Verboncoeur, “Temporal single-surface multipactor dynamics under obliquely incident linearly polarized electric field“, Phys. Plasmas, 26, 123509 (2019).
  60. P. Wong, Y. Y. Lau, Peng Zhang, N. M. Jordan, R. Gilgenbach, and J. P. Verboncoeur, “The Effects of Multipactor on the Quality of a Complex Signal Propagating in a Transmission Line“, Phys. Plasmas, 26, 112114 (2019).
  61. Y. Luo, and Peng Zhang, “Analysis of two-color laser-induced electron emission from a biased metal surface using an exact quantum mechanical solution“, Phys. Rev. Applied 12, 044056 (2019).
  62. S. Banerjee, J. Luginsland, and Peng Zhang, “A Two Dimensional Tunneling Resistance Transmission Line Model for Nanoscale Parallel Electrical Contacts“, Sci. Rep. 9, 14484 (2019).
  63. Y. Fu, J. Krek, D. Wen, Peng Zhang, and J. P. Verboncoeur, “Transition of low-temperature plasma similarity laws from low to high ionization degree regimes“, Plasma Sources Sci. Technol. 28, 095012 (2019).
  64. D. Wen, A. Iqbal, Peng Zhang, and J. P. Verboncoeur, “Suppression of single-surface multipactor discharges due to non-sinusoidal transverse electric field“, Phys. Plasmas 26, 093503 (2019).
  65. S. Banerjee and Peng Zhang, “A generalized self-consistent model for quantum tunneling current in dissimilar metal-insulator-metal junction“, AIP Advances 9, 085302 (2019); Erratum, AIP Advances 9, 119902 (2019).
  66. S. B. Fairchild, Peng Zhang, J. Park, T. C. Back, D. Marincel, Z. Huang, and M. Pasquali, “Carbon nanotube fiber field emission array cathodes“, IEEE Trans. Plasma Sci., 47, 2032 (2019). [Invited Paper]
  67. Y. Fu, J. Krek, Peng Zhang , J. P. Verboncoeur, “Gas breakdown in microgaps with a surface protrusion on the electrode“, IEEE Trans. Plasma Sci., 47, 2011 (2019). [Invited Paper]
  68. A. Iqbal, J. Verboncoeur, Peng Zhang, “Temporal multiparticle Monte Carlo simulation of dual frequency single surface multipactor“, Phys. Plasmas 26, 024503 (2019).
  69. Y. Fu, Peng Zhang, J. Krek, J. P. Verboncoeur, “Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions“, Appl. Phys. Lett., 114, 014102 (2019).
  70. Y. Luo, and Peng Zhang, “Ultrafast strong-field photoelectron emission due to two-color laser fields“, Phys. Rev. B, 98, 165442 (2018).
  71. Y. Fu, J. Krek, Peng Zhang, and J. P. Verboncoeur, “Evaluating microgap breakdown mode transition with electric field non-uniformity“, Plasma Sources Sci. Technol, 27, 095014 (2018).
  72. Y. Fu, Peng Zhang, and J. P. Verboncoeur, “Paschen’s curve in microgaps with an electrode surface protrusion“, Appl. Phys. Lett., 113, 054102 (2018).
  73. Peng Zhang, J. Park, S. B. Fairchild, N. P. Lockwood, Y. Y. Lau, J. Ferguson, and T. Back, “Temperature comparison of looped and vertical carbon nanotube fibers during field emission“, Appl. Sci., 8, 1175 (2018). [Feature Paper]
  74. Y. Fu, Peng Zhang, and J. P. Verboncoeur, “Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode“, Appl. Phys. Lett. 112, 254102 (2018). [Featured Article]
  75. A. Iqbal, J. P. Verboncoeur, Peng Zhang, “Multipactor susceptibility on a dielectric with two carrier frequencies“, Phys. Plasmas, 25, 043501 (2018).
  76. D. A. Yager-Elorriaga, Y. Y. Lau, Peng Zhang, P. C. Campbel, A. M. Steiner, N. M. Jordan, R. D. McBride, and R. M. Gilgenbach, “Evolution of sausage and helical modes in magnetized thin-foil cylindrical liners driven by a Z-pinch“, Phys. Plasmas, 25, 056307 (2018). [Invited Paper]
  77. Y. Fu, Peng Zhang, J. P. Verboncoeur, A. J. Christlieb, and X. Wang, “Effect of surface protrusion on plasma sheath properties in atmospheric microdischarges“, Phys. Plasmas, 25, 013530 (2018).
  78. Peng Zhang, S. B. Fairchild, T. C. Back, and Yi Luo, “Field emission from carbon nanotube fibers in varying anode-cathode gap with the consideration of contact resistance“, AIP Advances, 7, 125203 (2017).
  79. Peng Zhang, and Tony Pan, “Exact analytical theory for inverse tunneling of free vacuum electrons into a solid“, AIP Advances, 7, 065307 (2017).
  80. J. Lin, P. Y. Wong, P. Yang, Y. Y. Lau, W. Tang, and Peng Zhang, “Electric field distribution and current emission in a miniaturized geometrical diode“, J. Appl. Phys. 121, 244301 (2017).
  81. Peng Zhang, Agust Valfells, L. K. Ang, J. W. Luginsland, Y. Y. Lau, “100 years of the physics of diodes“, Appl. Phys. Rev., 4, 011304 (2017). [Editor’s Picks] [Most Read]
  82. D. H. Simon, P. Wong, D. Chernin, Y. Y. Lau, B. Hoff, Peng Zhang, C. F. Dong, and R. M. Gilgenbach, “On the evaluation of Pierce parameters C and Q in a traveling wave tube“, Phys. Plasmas, 24, 033114 (2017).
  83. D. A. Yager-Elorriaga, Peng Zhang, A. M. Steiner, N. M. Jordan, P. C. Campbell, Y. Y. Lau, and R. M. Gilgenbach, “Discrete helical modes in imploding and exploding cylindrical, magnetized liners“, Phys. Plasmas, 23, 124502 (2016).
  84. Peng Zhang, and Y. Y. Lau, “Ultrafast and nanoscale diodes“, J. Plasma Phys., 82, 595820505 (2016).
  85. D. A. Yager-Elorriaga, Peng Zhang, A. M. Steiner, N. M. Jordan, Y. Y. Lau, and R. M. Gilgenbach, “Seeded and unseeded helical modes in magnetized, non-imploding cylindrical liner-plasmas“, Phys. Plasmas, 23, 101205 (2016).
  86. F. Antoulinakis, D. Chernin, Peng Zhang, and Y. Y. Lau, “Effects of temperature dependence of electrical and thermal conductivities on the Joule heating of a one dimensional conductor“, J. Appl. Phys. 120, 135105 (2016).
  87. A. D. Greenwood, J. F. Hammond, Peng Zhang, and Y. Y. Lau, “On relativistic space charge limited current in planar, cylindrical, and spherical diodes”, Phys. Plasmas, 23, 072101 (2016).
  88. Peng Zhang, and Y. Y. Lau, “Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrodinger Equation“, Sci. Rep., 6, 19894 (2016).
  89. Peng Zhang, Q. Gu, Y. Y. Lau, and Y. Fainman, “Constriction Resistance and Current Crowding in Electrically-pumped Semiconductor Nanolasers with the Presence of Undercut and Sidewall Tilt“, IEEE J. Quantum Electronics, 52, 2000207 (2016).
  90. Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of current crowding in thin film contacts from exact field solution“, J. Phys. D: Appl. Phys., 48, 475501 (2015).
  91. Peng Zhang, “Scaling for quantum tunneling current in nano- and subnano-scale plasmonic junctions“, Sci. Rep., 5, 9826 (2015).
  92. Peng Zhang, L. K. Ang, and A. Gover, “Enhancement of coherent Smith-Purcell radiation at terahertz frequency by optimized grating, prebunched beams, and open cavity“, Phys. Rev. ST Accel. Beams, 18, 020702 (2015).
  93. Peng Zhang, and A. G. R. Thomas, “Enhancement of high-order harmonic generation in intense laser interactions with solid density plasma by multiple reflections and harmonic amplification“, Appl. Phys. Lett. 106, 131102 (2015).
  94. Y. L. Liu, Peng Zhang, S. H. Chen, and L. K. Ang, “Maximal charge injection of a uniform separated electron pulse train in a drift space“, Phys. Rev. ST Accel. Beams, 18, 123402 (2015).
  95. C. F. Dong, Peng Zhang, D. Chernin, Y. Y. Lau, B. W. Hoff, D. H. Simon, P. Wong, G. B. Greening, and R. M. Gilgenbach, “Harmonic Content in the Beam Current in a Traveling-Wave Tube“, IEEE Trans. Electron Devices, 62, 4285 (2015).
  96. D. Hung, I. M. Rittersdorf, Peng Zhang, D. Chernin, Y. Y. Lau, T. M. Antonsen, Jr., J.W. Luginsland, D. H. Simon, and R. M. Gilgenbach, “Absolute Instability near the Band Edge of Traveling-Wave Amplifiers“, Phys. Rev. Lett., 115, 124801 (2015).
  97. Y. L. Liu, Peng Zhang, S. H. Chen, and L. K. Ang, “Maximal charge injection of consecutive electron pulses with uniform temporal pulse separation“, Phys. Plasmas, 22, 084504 (2015).
  98. E. C. Welch, Peng Zhang, F. Dollar, Z.-H. He, K. Krushelnick, and A. G. R. Thomas, “Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses“, Phys. Plasmas, 22, 053104 (2015).
  99. Peng Zhang, C. P. Ridgers and A. G. R. Thomas, “The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas“, New J. Phys. 17, 043051 (2015). [selected for IOPselect]
  100. M. R. Weis, Peng Zhang, Y. Y. Lau, P. F. Schmit, K. J. Peterson, M. Hess, and R. M. Gilgenbach, “Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner“, Phys. Plasmas, 22, 032706 (2015).
  101. Peng Zhang, and D. Hung, “An analytical model for ballistic diode based on asymmetric geometry“, J. Appl. Phys., 115, 204908 (2014).
  102. Peng Zhang, and Y. Y. Lau, “An exact field solution of contact resistance and comparison with the transmission line model“, Appl. Phys. Lett., 104, 204102 (2014).
  103. M. R. Weis, Peng Zhang, Y. Y. Lau, I. M. Rittersdorf, J. C. Zier, R. M. Gilgenbach, M. H. Hess, and K. J. Peterson, “Temporal evolution of surface ripples on a finite plasma slab subject to the magneto-Rayleigh-Taylor instability“, Phys. Plasmas, 21, 122708 (2014).
  104. C. Perez-Arancibia, Peng Zhang, O. P. Bruno, and Y. Y. Lau, “Electromagnetic power absorption due to bumps and trenches on flat surfaces“, J. Appl. Phys., 116, 124904 (2014).
  105. Peng Zhang, and Y. Y. Lau, “Constriction Resistance and Current Crowding in Vertical Thin Film Contact“, IEEE J. Electron Devices Soc., 1, 83 (2013).
  106. Y. B. Zhu, Peng Zhang, A. Valfells, L. K. Ang, and Y. Y. Lau, “Novel scaling laws for the Langmuir-Blodgett solutions in cylindrical and spherical diodes“, Phys. Rev. Lett. 110, 265007 (2013).
  107. M. Franzi, R. Gilgenbach, Y. Y. Lau, B. Hoff, G. Greening, and Peng Zhang, “Passive mode control in the recirculating planar magnetron“, Phys. Plasmas, 20, 033108 (2013)
  108. Peng Zhang, D. Hung, Y. Y. Lau, “Current Flow in a 3-terminal Thin Film Contact with Dissimilar Materials and General Geometric Aspect Ratios“, J. Phys. D: Appl. Phys., 46, 065502 (2013); Corrigendum, ibid, 46, 209501 (2013)
  109. Peng Zhang, B. Hoff, Y. Y. Lau, D. M. French, J. W. Luginsland, “Excitation of a slow wave structure“, Phys. Plasmas, 19, 123104 (2012).
  110. Peng Zhang, Y. Y. Lau, and R. S. Timsit, “On the Spreading Resistance of Thin-Film Contacts“, IEEE Trans. Electron Devices, 59, 1936 (2012).
  111. Peng Zhang, Y. Y. Lau, I. M. Rittersdorf, M. R. Weis, R. M. Gilgenbach, D. Chalenski, and S. A. Slutz, “Effects of magnetic shear on magneto- Rayleigh-Taylor instability”, Phys. Plasmas, 19, 022703 (2012).
  112. J. Zier, R. M. Gilgenbach, Y. Y. Lau, D. Chalenski, D. French, M. Gomez, S. Patel, I. Rittersdorf, A. Steiner, M. Weiss, Peng Zhang, M. Mazarakis, M. E. Cuneo, and M. Lopez, “Magneto-Rayleigh-Taylor Experiments on a MegaAmpere Linear Transformer Driver“, Phys. Plasmas, 19, 032701 (2012).
  113. Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Thin film contact resistance with dissimilar materials“, J. Appl. Phys. 109, 124910 (2011).
  114. Peng Zhang, Y. Y. Lau, M. Franzi and R. M. Gilgenbach, “Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas“, Phys. Plasmas, 18, 053508 (2011).
  115. Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Minimization of thin film contact resistance“, Appl. Phys. Lett. 97, 204103 (2010).
  116. Peng Zhang, and Y. Y. Lau, “Scaling Laws for Electrical Contact Resistance with Dissimilar Materials“, J. Appl. Phys. 108, 044914 (2010).
  117. M. R. Gomez, D. M. French, W. Tang, Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Experimental validation of a higher dimensional theory of electrical contact resistance“, Appl. Phys. Lett. 95, 072103 (2009).
  118. Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of RF absorption and electric and magnetic field enhancements due to surface roughness“, J. Appl. Phys. 105, 114908 (2009)
  119. Peng Zhang, W. S. Koh, L. K. Ang, and S. H. Chen, “Short-pulse space-charge-limited flows in a drift space“, Phys. Plasmas, 15, 063105 (2008)
  120. L. K. Ang, and Peng Zhang, “Ultrashort-pulse Child-Langmuir law in the quantum and relativistic regimes“, Phys. Rev. Lett. 98, 164802 (2007)

 Peer Reviewed Conference Proceedings: 

  1. Peng Zhang, Y. Y. Lau, and R. S. Timsit, “Spreading Resistance of a Contact Spot on a Thin Film“, Proc. of the 59th IEEE Holm Conf. on Electrical Contacts, Newport, RI, 2013.
  2. Y. Y. Lau, D. Chernin, Peng Zhang, and R. M. Gilgenbach, “A Voltage Scale for Electro-Thermal Runaway“, Proc. of IEEE Pulsed Power and Plasma Science, San Francisco, California, 2013.
  3. Peng Zhang, Y. Y. Lau, W. Tang, M. R. Gomez, D. M. French, J. C. Zier, and R. M. Gilgenbach, “Contact Resistance with Dissimilar Materials: Bulk Contacts and Thin Film Contacts“, Young Investigator Award Paper, Proc. of the 57th IEEE Holm Conf. on Electrical Contacts, pp. 31-36, 2011.
  4. Y. Y. Lau, R. M. Gilgenbach, J. C. Zier, D. Chalenski, D. M. French, M. R. Gomez, S. G. Patel, I. M. Rittersdorf, A. Steiner, M. R. Weis, Peng Zhang, M. Mazarakis, M. E. Cuneo, and M. Lopez, “Magneto-Rayleigh-Taylor Instability: A General Model and Preliminary Experiments”, AIP Proc. Dense Z-Pinch (Biarritz, France, 2011).

 Conference Presentations and Abstracts (full list > 140, available on request): 

  1. [Invited Talk] Peng Zhang, “Recent development on the modeling of laser induced electron emission”, Photocathode Physics for Photoinjectors (P3) Workshop, October 15-17, 2018, Santa Fe, New Mexico, USA.
  2. [Invited Talk] Peng Zhang, “Theory and modeling of ultrafast and nanoscale diodes”, 9th Joint Meeting of Chinese Physics Worldwide – OCPA9 Conference, July 17 – 20, 2017, Tsinghua University, Beijing, China.
  3. [Invited Talk] Peng Zhang, “Ultrafast and Nanoscale Interfacial Charge Transport”, The 2017 EITA Conference on New Materials, Nanotechnology and New Energy (EITA-New Materials 2017), July 1, 2017, Ann Arbor, Michigan, USA.
  4. [Tutorial Talk] Peng Zhang, “Theory and Modeling of Ultrafast and Nanoscale Interfacial Electron Transport”, Mini-Course on Charged Particle Beams and High Powered Pulsed Sources, 44th IEEE International Conference on Plasma Science (ICOPS), May 25 – 26, 2017, Atlantic City, New Jersey, USA.
  5. [Invited Talk] Peng Zhang, “Modeling of ultrafast and nanoscale interfacial electron transport”, S5.1, 11th International Vacuum Electron Sources Conference, October 19, 2016, Seoul, Korea.
  6. [Invited Talk] Y. Y. Lau and Peng Zhang, “Ultrafast and Nanoscale Diodes”, Solved and Unsolved Problems in Plasma Physics, A Symposium in Honor of Nathaniel J. Fisch, March 29, 2016, Princeton, New Jersey, USA.
  7. [Invited Talk] Peng Zhang, “Ultrafast and nanoscale interfacial charge transport and its interaction with electromagnetic waves”, Town Hall Meeting, Frontiers of Plasma Science Workshops, DoE Office of Fusion Energy Science (OFES), Sec. 9, paper No. 9, July 1, 2015, Bethesda, Maryland, USA.
  8. [Invited Talk] Peng Zhang, and Y. Y. Lau, “Recent development on the modeling of electrical contact”, IEEE Pulsed Power & Plasma Science Conference – PPPS 2013 (June 2013, San Francisco, California, USA).
  9. [Invited Talk] Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Bulk and Thin Film Contact Resistance with Dissimilar Materials”, The Semiconductor Manufacturing Advanced Process Control (APC) Conference XXIV 2012 (September 2012, Ann Arbor, MI, USA).