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The geometry that minimizes the electrical constriction resistance of thin film contact is identified
for both Cartesian and cylindrical geometries. Assuming uniform resistivity on an idealized model,
simple scaling laws for the thin film contact resistance are constructed, for arbitrary ratio of
constriction size to film thickness. Optimal conditions to minimize the thin film contact resistance
are identified. The analytic calculations are confirmed with numerical code results. © 2010
American Institute of Physics. �doi:10.1063/1.3517497�

Thin film contact is a very important issue in various
areas, such as integrated circuits,1,2 thin film devices,3,4 car-
bon nanotube and carbon nanofiber based cathodes5,6 and
interconnects,5,7 field emitters,6,8 and thin film-to-bulk
contacts,9 etc. The two-dimensional �2D� thin film resistance
has been investigated for various patterns in Cartesian
geometry.3 The spreading resistance of three-dimensional
�3D� thin film disks is also analyzed.9,10 However, there is a
lack of analytical scaling that readily gives an explicit evalu-
ation of thin film contact resistance. Few theoretical studies
focus on optimization of the thin film pattern that minimizes
this contact or constriction resistance. This paper addresses
these issues.

Holm’s classical a-spot theory of electrical contact
resistance11 has been extended to include the effects of finite
bulk radius,12 of finite thickness of contact “bridge,”13,14 and
of dissimilar materials and contaminants.15 These prior
works are inapplicable to the thin film geometry that is stud-
ied in this paper �Fig. 1�. This is particularly the case when
the ratio of the constriction radius �a� to the film thickness
�h� is on the order of unity, where the current is mostly
confined to the immediate vicinity of the constriction and
flows parallel to the thin film boundary.

Both Cartesian and cylindrical geometries of the thin
film are shown in Fig. 1. The current flows inside the base
thin film, converging toward the center of the joint region,
and feeds into the top channel. This configuration is repre-
sentative to various applications. The Cartesian case may
represent a thin film sheet resistor,3 where the third dimen-
sion, which is perpendicular to the plane of the paper, is
small. It may also represent a heatsink geometry, where this
third dimension is large. The cylindrical case may represent a
carbon nanotube5–8 or a field emitter6 setting on a substrate
or it may represent a Z-pinch wire connected to a plate
electrode.16 With the assumption of uniform resistivity, we
will study the dependence of the constriction resistance on
the geometries shown in Fig. 1. We shall determine the con-
ditions under which the thin film constriction or contact re-
sistance is minimized.

Consider first the 2D Cartesian “T”-shape thin film pat-
tern �Fig. 1�. The base region has width h, and the top region
has half width a. The pattern is symmetrical about the verti-
cal center axis. Current flows from the two terminals E and F

to the top terminal GH. The resistivity � is assumed constant
for the whole pattern. We also assume that L2�h, L2�a,
and L1�a, so that the current flows are uniform at all the
ends E, F, G, and H, far from the joint region. The total
resistance R from EF to GH is found to be

R =
�L2

2h � W
+

�

4�W
Rc�a

h
� +

�L1

2a � W
, �1�

where W denotes the channel width in the third, ignorable
dimension that is perpendicular to the paper, and the rest of
the symbols have been defined in Fig. 1. In Eq. �1�, the first
term represents the bulk resistance of the thin film base, from
A to F, and from D to E. The third term represents the bulk
resistance of the top region from B to G. The second term
represents the remaining constriction resistance Rc for the
region ABCD.

If we express the constriction �contact� resistance as Rc

= �� /4�W�R̄c for the Cartesian case, we find that R̄c depends
only on the aspect ratio a /h, as explicitly shown in Eq. �1�.
The exact expression for R̄c can be simply derived from con-
formal mapping3,13,17
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which is plotted in Fig. 2. For a /h�1, R̄c increases as a /h

increases. For a /h�1, R̄c increases as a /h decreases. This
behavior is easily understood since the current flow paths
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FIG. 1. �Color online� Thin film structures in either Cartesian or cylindrical
geometries. Terminals E and F are held at a constant voltage �V0� relative to
terminal GH, which is grounded. The vertical dash-dot line is the axis of
rotation for the cylindrical geometry.
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will be lengthened whenever the aspect ratio of a /h deviates
from 1. Thus, the constriction �contact� resistance is mini-

mized when a=h, at which R̄c=2�−4 ln 2=3.5106. Taylor
expansion of Eq. �2� yields the asymptotic expressions

R̄c 
 − 4 ln�a/h� − 8 ln 2 + 4, a/h � 1,

R̄c 
 4 ln�a/h� − 8 ln 2 + 4, a/h � 1 �3�

which are also shown in Fig. 2.
Since the cylindrical geometry shown in Fig. 1 cannot be

solved by conformal mapping, we shall use a Fourier repre-
sentation for the solutions in the cylindrical tube at the top,
and in the circular disk at the bottom, and then match the
solutions at the interface BC. This procedure extends the one
given in Appendix A of Ref. 15, and will be published else-
where. As a validation, we have applied this Fourier repre-
sentation technique to the Cartesian geometry and compared
with the results obtained from conformal mapping. This
comparison is also shown in Fig. 2. Excellent agreement is
noted. This validation added confidence on the Fourier rep-
resentation method as applied to the cylindrical geometry,
reported below.

In the cylindrical configuration �Fig. 1�, a long cylindri-
cal rod of radius a is standing on the center of large thin-film
circular disk of thickness h and radius b=a+L2. Current
flows inside the thin-film disk, from circular rim, E and F, to
terminal GH. Once more, we assume L1�a, L2�a, and L2
�h, so that the current flow is uniform at F and G, far from
the constriction region ABCD. For constant resistivity � the
total resistance R from EF to GH is found to be

R =
�

2�h
ln�b

a
� +

�

4a
R̄c�a

h
� +

�L1

�a2 . �4�

In Eq. �4�, the first term represents the bulk resistance of the
thin film, exterior to the constriction region ABCD. It is sim-
ply the resistance of a disk of inner radius a, outer radius b,
and thickness h.9 The third term represents the bulk resis-
tance of the top cylinder, BCHG. The second term represents
the remaining constriction resistance Rc for the region
ABCD. The constriction �contact� resistance is expressed as

Rc= �� /4a�R̄c for the cylindrical case. The theoretical result

for R̄c, obtained from the Fourier representation method, is

shown by the solid curve in Fig. 3. This curve may be fitted
with the following formula:

R̄c 
 1.0404 – 2.2328x + 5.0695x2 – 7.5890x3

+ 6.5898x4 − 2.9466x5 + 0.5226x6,

x = a/h,a/h 	 1.6,

R̄c 
 0.4571 − 0.1588y + 0.1742y2 − 0.0253y3

+ 0.0015y4, y = ln�a/h�,1.6 � a/h � 100. �5�

Equation �5� is accurate to within 1% in representing the
Fourier analysis results for a /h�100. We should emphasize
that we have not established the asymptotic dependence of

R̄c as a /h→
.
It is natural to anticipate that when L2�h, L2�a, and

L1�a, R̄c depends only on the aspect ratio a /h, as shown in
Eq. �4� and Fig. 3. These conditions guarantee that the cur-
rent flows are uniform at F and G, far away from the con-

striction region. Thus, the normalized contact resistance R̄c,
which arises primarily in the immediate vicinity of the con-
striction edge, is independent of b. Somewhat unexpectedly,
our Fourier representation data reveal that the sole depen-

dence of R̄c on a /h is observed for a much broader range of
parameters, as long as either L2�a or L2�h. This is prob-
ably due to the fact that if L2�a, the electrostatic fringe field
at the corner B �Fig. 1� is restricted to a distance of at most a
few a’s, making the flow field at the terminal F insensitive to
b. Likewise, if L2�h, the electrostatic fringe field at the
corner B is restricted to a distance of at most a few h’s,
making the flow field at the terminal F also insensitive to b.
Thus, for a given ratio of a /h, Eq. �5� may be readily used to
evaluate the corresponding constriction �contact� resistance
Rc, provided L1�a, and either L2�h or L2�a.

Figure 3 shows that there is also a minimum value of R̄c
for the cylindrical geometry. This minimum value is 0.42,
occurring at a /h
1.6. The cylindrical case differs from the
Cartesian case in one aspect, namely, as a /h→0, our nu-

merical calculations show that R̄c converges to a constant
value of about 1.04. The explanation follows. If a /h→0,
both the radius and thickness of the film region are much
larger than the radius a of the top cylinder, as if two semi-
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FIG. 2. �Color online� R̄c as a function of a /h, for the Cartesian structure in
Fig. 1. The solid line represents the conformal mapping results �Eq. �2��, the
dashed lines represent the asymptotes �Eq. �3��, and the symbols represents
the Fourier series representation calculation.
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FIG. 3. �Color online� R̄c as a function of a /h, for the cylindrical structure
in Fig. 1. The theoretical result �line� �Eq. �5�� is compared to MAXWELL 3D
simulation �symbols�. In the simulation, we set �=0.001 �m, L1=10 mm,
a ranging from 0.01 to 4 mm with fixed b=10h=5 mm, and h ranging from
0.1 to 20 mm with fixed b=10a=10 mm, and a terminal voltage V0

=10 V was applied.

204103-2 Zhang, Lau, and Gilgenbach Appl. Phys. Lett. 97, 204103 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp



infinite long cylinders are joining together with radius ratio
of b /a→
. In this case, the a-spot theory11 gives a value of

R̄c of 1.0404, for a uniform resistivity over the whole current
channel �c.f. Eq. �2� of Ref. 15�.

The calculated R̄c is also spot-checked against MAXWELL

3D code18 with several combinations of a, h, and b, as shown
in Fig. 3. Good agreement is noted in general. The discrep-
ancies, e.g., in the leftmost and rightmost data point in Fig. 3,
are due to the large contrasts in the dimensions �L1 ,b ,a ,h�,
as well as insufficiently fine meshing of the MAXWELL 3D
code, for which the MAXWELL 3D code results are less accu-
rate.

In this paper, analytic scalings for the constriction �or
contact� resistance of thin films are presented, for both Car-
tesian and cylindrical configurations. For the Cartesian case,

R̄c is minimized at a /h=1. If a /h deviates from 1, R̄c in-
creases logarithmically. For the cylindrical case, minimum

R̄c occurs at a /h=1.6. In the limit a /h→0, R̄c converges to
the known limit of 1.0404. Our analysis here may readily be
adapted to thermal conduction in thin film structures under
steady state. It could also be applicable to the maximization
of channel flow at a given pressure.
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