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This paper presents results of thin film contact resistance with dissimilar materials. The model

assumes arbitrary resistivity ratios and aspect ratios between contact members, for both Cartesian

and cylindrical geometries. It is found that the contact resistance is insensitive to the resistivity

ratio for a/h< 1, but is rather sensitive to the resistivity ratio for a/h> 1 where a is the constriction

size and h is film thickness. Various limiting cases are studied and validated with known results.

Accurate analytical scaling laws are constructed for the contact resistance over a large range of

aspect ratios and resistivity ratios. Typically the minimum contact resistance is realized with a/h � 1,

for both Cartesian and cylindrical cases. Electric field patterns are presented, showing the crowding

of the field lines in the contact region. VC 2011 American Institute of Physics.

[doi:10.1063/1.3596759]

I. INTRODUCTION

Thin film contact is a very important issue in many areas,

such as integrated circuits,1,2 thin film devices,3,4 carbon

nanotube and carbon nanofiber based cathodes5,6 and inter-

connects,5,7 field emitters,6,8 and thin film-to-bulk contacts,9

etc. Even in the simplest form, the film resistor remains the

most fundamental component of various types of circuits.3,4

Recently, it becomes increasingly important in the miniaturi-

zation of electronic devices such as micro-electromechanical

system relays and microconnector systems, where thin metal

films of a few microns are typically used to form electrical

contacts.9 In high energy density physics, the electrical con-

tacts between the electrode plates and in Z-pinch wire arrays

are crucial for high current delivery.10

For decades, the fundamental model of electrical contact

has been Holm’s classical a-spot theory,11 which assumes a

circular contact region (of zero thickness) between two bulk

conductors. The a-spot theory has recently been extended to

include the effects of finite bulk radius,12 of finite thickness

of contact “bridge,”13,14 and of dissimilar materials and con-

taminants.15 These prior works are inapplicable to the thin

film geometry that is studied in this paper (Figs. 1–3). This is

particularly the case when the current is mostly confined to

the immediate vicinity of the constriction and flows parallel

to the thin film boundary.

The two-dimensional (2D) thin film resistance has been

investigated for various patterns in Cartesian geometry.3 The

spreading resistance of three-dimensional (3D) thin film disks

is also analyzed.9,16 These prior works assume a constant and

uniform electrical resistivity in all regions. In particular, Tim-

sit9 analytically calculated the spreading resistance of a circu-

lar thin conducting film of thickness h connected to a bulk

solid via an a-spot constriction of radius a, but with the

assumption that the current density distribution through the

a-spot of this film is the same as the known current density

distribution through the a-spot in a semi-infinite bulk

solid.9,11,12 Timsit stated that his model is reliable only for

0< a/h � 0.5.9 As we shall see, in this paper, we are able to

confirm Timsit’s results for 0< a/h � 0.5, and at the same

time to extend his results for a/h up to ten [cf., the lowest solid

curve in Fig. 10].

Most recently, we developed a simple and accurate ana-

lytical model for Figs. 1–3, under the same assumption of

constant and uniform resistivity in all regions.17 We deter-

mined the condition which minimizes the thin film contact

resistance for both Cartesian and cylindrical geometries. Our

scaling laws were validated against MAXWELL 3D18 simu-

lation and against conformal mapping results for the Carte-

sian geometry (Figs. 1 and 2).

In this paper, we greatly extend the analytic theory of

Ref. 17 by allowing the contact members to have an arbitrary

ratio in electrical resistivity. Figure 1 shows both Cartesian

and cylindrical geometries of the thin film. The current flows

inside the base thin film with width (thickness) h and electri-

cal resistivity q2, converging toward the center of the joint

region, and feeds into the top channel with half-width

FIG. 1. (Color online) Thin film structures in either Cartesian or cylindrical

geometries. Terminals E and F are held at a constant voltage (V0) relative to

terminal GH, which is grounded. The z-axis is the axis of rotation for the cy-

lindrical geometry. The resistivity ratio q1/q2 in Regions I and II is arbitrary.a)Electronic mail: yylau@umich.edu.
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(radius) a and electrical resistivity q1, in Cartesian (cylindri-

cal) geometry. This configuration is representative to various

applications. The Cartesian case may represent a thin film

sheet resistor [Fig. 2(a)],3 where the third dimension, which

is perpendicular to the plane of the paper, is small. It may

also represent a heatsink geometry [Fig. 2(b)], where this

third dimension is large. The cylindrical case (Fig. 3) may

represent a carbon nanotube5–8 or a field emitter6 setting on a

substrate; or it may represent a z-pinch wire connected to a

plate electrode.10 It is assumed that the axial extent of the

top channel (i.e., L1 in Fig. 1) is so long that the current flow

in this region is uniform far from the contact region. Our

analytic formulation (given in detail in the Appendices)

assume a finite length L2 in the base region (Fig. 1). Thus,

we study the dependence of the contact or constriction resist-

ance on the geometries and resistivities shown in Fig. 1, for

arbitrary values of a, b, h, q1, and q2 (Figs. 4, 5, 9, and 10).

The potential profiles are formulated exactly, from which the

interface contact resistances are derived. Simple, accurate

scaling laws for the thin film contact resistance are synthe-

sized (Figs. 6 and 11). The patterns of current flow are also

displayed. The conditions to minimize the contact resistance

are identified in various limits. Validation of our theory

against known results is indicated.

Only the major results will be presented in the main

text. Their derivations are given in the appendices. In Sec. II,

FIG. 2. (Color online) Two cases of Cartesian thin film contact represented

by Fig. 1: (a) thin film sheet resistor and (b) heatsink geometry.

FIG. 4. (Color online) �Rc for the Cartesian structure in Figs. 1 and 2 is plot-

ted as a function of (a) L2/a and (b) L2/h for a/h¼ 0.1 and 8.0, and q1/

q2¼ 10, 1.0, and 0.1 (top to bottom).

FIG. 3. (Color online) Cylindrical case of thin film contact represented by

Fig. 1.

FIG. 5. (Color online) �Rc as a function of a/h, for the Cartesian structure in

Figs. 1 and 2. The solid line represents the exact calculations [Eq. (A8)],

where each curve consists of many combinations of b/a and b/h, with either

L2 � a or L2 � h. The dashed lines represent the limiting cases of

q1=q2 !1 [Eq. (2)] and q1=q2 ! 0 [Eq. (3)].
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the results for the Cartesian thin film contact resistance (con-

striction resistance) with dissimilar materials are presented

[Fig. 2]. In Sec. III, the results for the cylindrical thin film

contact resistance (constriction resistance) with dissimilar

materials are presented [Fig. 3]. Concluding remarks are

given in Sec. IV.

II. CARTESIAN THIN FILM CONTACT WITH
DISSIMILAR MATERIALS

Let us first consider the 2D Cartesian “T”-shape thin

film pattern (Figs. 1 and 2). The pattern is symmetrical about

the vertical center axis. Current flows from the two terminals

E, F to the top terminal GH (Fig. 1). We solve the Laplace’s

equation for Regions I and II, and match the boundary condi-

tions at the interface BC, z¼ 0. The details of the calcula-

tions are given in the Appendix A. The total resistance, R,

from EF to GH is found to be

R ¼ q2L2

2h�W
þ q2

4pW
Rc

a

b
;
a

h
;
q1

q2

� �
þ q1L1

2a�W
; (1)

where W denotes the channel width in the third, ignorable

dimension that is perpendicular to the paper, and the rest of

the symbols have been defined in Fig. 1. In Eq. (1), the first

term represents the bulk resistance of the thin film base, from

A to F, and from D to E, where L2¼ b – a. The third term

represents the bulk resistance of the top region from B to G.

The second term represents the remaining constriction (or

contact) resistance, Rc, for the region ABCD. If we express

the constriction (contact) resistance as Rc ¼ ðq2=4pWÞRc for

the Cartesian case, we find that Rc depends on the aspect

ratios a/h and a/b, and on the resistivity ratio q1/q2, as explic-

itly shown in Eq. (1). The exact expression for Rc is derived

in Appendix A [cf., Eq. (A8)]. In Eq. (A8), the coefficient Bn

is solved numerically in terms of q1/q2, a/h, and a/b [cf., Eq.

(A6)]. These numerical values of Bn then give Rc from Eq.

(A8).

The exact theory of Rc [cf., Eq. (A8)] is plotted in Fig.

4(a) as a function of L2/a, for various q1/q2 and a/h. To ex-

plicitly examine the dependence on the geometrical parame-

ters, Rc in Fig. 4(a) is replotted as a function of L2/h in Fig.

4(b). It is seen from Fig. 4 that Rc becomes almost a constant

if either L2/a� 1 or L2/h� 1, in which case Rc is deter-

mined only by the value of a/h and q1/q2, independent of b.

Many other similar calculations (not shown) lead to the same

conclusion. This is due to the fact that if L2� a, the electro-

static fringe field at the corner B (Fig. 1) is restricted to a dis-

tance of at most a few a’s, making the flow field at the

terminal F insensitive to b. Likewise, if L2� h, the electro-

static fringe field at the corner B is restricted to a distance of

at most a few h’s, making the flow field at the terminal F
also insensitive to b.

In Fig. 5, the exact theory of Rc [cf., Eq. (A8)] is plotted

as a function of a/h, for various q1/q2. Each solid curve in

Fig. 5 consists of many combinations of b/a and b/h, with

either L2� a or L2� h. Again, Rc is independent of b, pro-

vided either L2� a or L2� h. For a given a/h, Rc increases

as q1/q2 increases. It is clear that there exists a minimum of

value of Rc in the region of a/h near unity, for a given q1/q2.

This a/h value for minimum Rc decreases slightly as q1/q2

increases. For the special case of q1/q2¼ 1, the minimum

Rc ¼ 2p� 4 ln 2 ¼ 3:5106 occurs exactly at a/h¼ 1,3,17 and

if a/h deviates from 1, Rc increases logarithmically as
�Rc ffi �4 ln a=hð Þ � 1:5452 for a=h� 1, and �Rc ffi 4 ln a=hð Þ
� 1:5452 for a=h� 1.3,17 In the regime a/h< 1, the range of

variation Rcðq1=q2Þ for a given a/h is insignificant (Fig. 5);

however, in the regime of a/h> 1, Rcðq1=q2Þ for a given a/h
may change by an order of magnitude or more.

In the limit of q1/q2 !1; Rc is simplified as (cf.,

Eq. (A10) in Appendix A)

Rcjq1=q2!1 ¼ 4
X1
n¼1

coth ðn� 1=2Þph=b½ 	
n� 1=2

sin2 ðn� 1=2Þpa=b½ 	
ðn� 1=2Þpa=b½ 	2

� 2pðb� aÞ=h; (2)

which is also plotted in Fig. 5. Note that the exact theory for

q1/q2¼ 100 overlaps with Eq. (2). In the limit of q1/q2

!1; the minimum Rc ffi 3.9 occurs at a/h¼ 0.85, as shown

in Fig. 5.

In the opposite limit, q1/q2! 0, the region BCHG
(Fig. 1) acts as a perfectly conducting material with respect

to the base region BCEF. Thus, the whole constriction

FIG. 6. (Color online) �Rc for Cartesian thin film structures in Figs. 1 and 2,

as a function of (a) aspect ratio a/h and (b) resistivity ratio q1/q2; symbols

for the exact theory, solid lines for the scaling law Eq. (4).
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interface BC is an equipotential surface, as if L1¼ 0 and the

external electrode is applied directly to the interface BC for

the Cartesian geometry. This special case is analyzed by

Hall (cf., Fig. 2 and Eq. (12) of Hall’s 1967 paper3), and

from which Rc in the limit of q1/q2! 0 is given as

�Rcjq1=q2!0¼ 2p
a

h
� 4 ln sinh

p
2

a

h

� �h i
; (3)

which is also plotted in Fig. 5. Note that the exact theory for

q1/q2¼ 0.01 overlaps with Eq. (3). This agreement may be con-

sidered as one validation of the analytic theory presented in Ap-

pendix A. In the limit of q1/q2! 0; Rc converges to a constant

minimum value of 4ln2¼ 2.77 for a/h> 2, as shown in Fig. 5.

As another validation, consider the special case q1/

q2¼ 1 and L2¼ 0 (Fig. 1). This case has an exact solution

using conformal mapping.3 The exact values of Rc for

a/h¼ 0.1 and a/h¼ 8 obtained from conformal mapping are,

respectively, 2.77259 and 7.27116. In comparison, our nu-

merical values are, respectively, 2.7722 and 7.2692, as

shown in the data for L2¼ 0 in Fig. 4.

The vast amount of data collected from the exact calcu-

lations allows us to synthesize a simple scaling law for the

normalized contact resistance Rc in Eq. (1) and Fig. 5 as (for

L2� a or L2� h)

�Rc
a

h
;
q1

q2

� �
ffi �Rc0

a

h

� �
þ

D a
h

� �
2
� 2q1

q1 þ b a
h

� �
q2

; (4)

�Rc0 a=hð Þ ¼ �Rc a=hð Þjq1=q2!0¼ 2pa=h� 4 ln sinh pa=2hð Þ½ 	;
(5)

D a=hð Þ ¼
0:5346 a=hð Þ2þ0:0127 a=hð Þ þ 0:4548; 0:03 � a=h � 1;

0:0147x6 � 0:0355x5 þ 0:1479x4 þ 0:4193x3 þ 1:1163x2 þ 0:9970xþ 1;

x ¼ lnða=hÞ; 1 < a=h � 30;

8><
>:

b a=hð Þ ¼ �0:0003 a=hð Þ2þ 0:1649 a=hð Þ þ 0:6727; 0:03 � a=h � 30:

(6)

This scaling law of Cartesian thin film contact resistance,

Eq. (4), is shown in Fig. 6, which compares extremely

well with the exact theory, for the range of

0 < q1=q2 <1 and 0.03 � a/h � 30. (We have not found

the scaling law for a/h> 30 for general values of q1/q2, as

data for a/h > 30 are not easy to generate from the exact

theory, Eq. (A8).)

The field line equation, y¼ y(z), may be numerically inte-

grated from the first order ordinary differential equation

dy=dz ¼ Ey=Ez ¼ ð@U�=@yÞ=ð@U�=@zÞ where U � is given

by Eq. (A1). Figure 7 shows the field lines in the right half of

Region II (Fig. 1) for the special case of q1/q2¼ 1, with vari-

ous aspect ratios a/h. It is clear that the field lines are most

uniformly distributed over the conduction region when a/

h¼ 1, which is consistent with the minimum normalized

contact resistance Rc at a/h¼ 1 for q1/q2¼ 1 (Fig. 5). The

field lines are horizontally crowded around the corner of the

constriction when a/h � 1 [Fig. 7(b)], since in this limit

most of the potential variations in the thin film (Region II in

Fig. 1) are restricted to a distance of a few a’s. The field lines

become vertically crowded around the corner of the constric-

tion when a/h� 1 [Fig. 7 (d)], since in this limit most of the

potential variations in the upper region (Region I in Fig. 1)

are restricted to a distance of a few h’s. Both limits lead to

higher contact resistance in general (Figs. 5 and 6). In Fig. 8,

the field lines are shown for the special case of a/h¼ 1, with

various resistivity ratios q1/q2. As q1/q2 increases, Region II

becomes more conductive relative to Region I, the interface

between Region I and II (i.e., BC in Fig. 1) becomes more

and more like an equipotential, therefore, the field lines (and

the current density) at the interface become more uniformly

distributed, as shown in Fig. 8(c). For q1/q2¼ 1, the calcu-

lated field lines [from Eq. (A1)] are also compared to those

obtained from conformal mapping, with excellent agreement

for all calculations, as shown in Figs. 7 and 8(b). This close

agreement of the field lines with the exact conformal map-

ping formulation is another validation of the series expansion

method.

FIG. 7. (Color online) Field lines in the right half of Region II of the Carte-

sian geometry in Fig. 1 for q1/q2¼ 1 with (a) a/h¼ 0.1, (b) zoom in view of

(a) for 0 � y/a � 3, (c) a/h¼ 1, and (d) a/h¼ 10. The results from series

expansion method [Eq. (A1)] (solid lines) are compared to those from con-

formal mapping (dashed lines).
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III. CYLINDRICAL THIN FILM CONTACT WITH
DISSIMILAR MATERIALS

We now consider the cylindrical configuration of Fig. 1

using a similar approach. A long cylindrical rod of radius a
with resistivity q1, is standing on the center of a large thin-

film circular disk of thickness h, and radius b¼ aþ L2 with

resistivity q2. Current flows inside the thin-film disk from

circular rim E and F to terminal GH (Figs. 1 and 3). We

solve the Laplace’s equation for Regions I and II, and match

the boundary conditions at the interface BC, z¼ 0. The

details of the calculations are given in the Appendix B. The

total resistance, R, from EF to GH is found to be

R ¼ q2

2ph
ln

b

a

� �
þ q2

4a
Rc

a

b
;
a

h
;
q1

q2

� �
þ q1L1

pa2
: (7)

In Eq. (7), the first term represents the bulk resistance of the

thin film in Region II, exterior to the constriction region

ABCD. It is simply the resistance of a disk of inner radius a,

outer radius b, and thickness h.9 The third term represents

the bulk resistance of the top cylinder, BCHG. The second

term represents the remaining constriction resistance, Rc, for

the region ABCD. If we express the constriction (contact) re-

sistance as Rc ¼ ðq2=4aÞRc for the cylindrical case, we find

that Rc depends on the aspect ratios a/h and a/b, and on the

resistivity ratio q1/q2, as explicitly shown in Eq. (7). The

exact expression for Rc is derived in Appendix B [cf., Eq.

(B8)]. In Eq. (B8), the coefficient Bn is solved numerically in

terms of q1/q2, a/h, and a/b [cf., Eq. (B6)]. These numerical

values of Bn then give Rc from Eq. (B8).

The exact theory of Rc [Eq. (B8)] is plotted in Fig. 9(a)

as a function of L2/a, for various q1/q2 and a/h, where L2¼ b - a
(Fig. 1). To explicitly examine the dependence on the geo-

metrical parameters, Rc in Fig. 9(a) is replotted as a function

of L2/h in Fig. 9(b). It is found that Rc becomes constant if ei-

ther L2/a� 1 or L2/h� 1, in which case Rc is determined

only by the value of a/h and q1/q2, independent of b. Many

other similar calculations (not shown) lead to the same con-

clusion. This is due to the fact that if L2� a, the electrostatic

fringe field at the corner B (Fig. 1) is restricted to a distance

of at most a few a’s, making the flow field at the terminal F
insensitive to b. Likewise, if L2� h, the electrostatic fringe

field at the corner B is restricted to a distance of at most a

few h’s, making the flow field at the terminal F also insensi-

tive to b.

In Fig. 10, the exact theory of Rc [cf., Eq. (B8)] is plot-

ted as a function of a/h, for various q1/q2 and a/b. Again, Rc

is independent of b, provided either L2� a or L2� h. For a

given a/h, Rc increases as q1/q2 increases, similar to the Car-

tesian case. It is clear that there is a minimum of value of Rc

in the region of a/h near 1.5, for a given q1/q2. The a/h value

for minimum Rc decreases slightly as q1/q2 increases. For

the special case of q1/q2¼ 1, the minimum Rc ffi 0:42 occurs

at a=h ffi 1:6.17 Rc is fitted to the following formula for q1/

q2¼ 1:17

FIG. 8. (Color online) Field lines in the right half of Region II of the Carte-

sian geometry in Fig. 1 for a/h¼ 1 with (a) q1/q2¼ 0.1, (b) q1/q2¼ 1, and

(c) q1/q2¼ 10. For q1/q2¼ 1, the results from series expansion method [Eq.

(A1)] (solid lines) are compared to those from conformal mapping (dashed

lines).

FIG. 9. (Color online) �Rc for the cylindrical structure in Figs. 1 and 3, is

plotted as a function of (a) L2/a, and (b) L2/h, for a/h¼ 0.1 and 10.0, and q1/

q2¼ 10, 1.0, and 0.1 (top to bottom).
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�Rc ffi 1:0404� 2:2328xþ 5:0695x2 � 7:5890x3

þ 6:5898x4 � 2:9466x5 þ 0:5226x6; x ¼ a=h;a=h � 1:6;

�Rc ffi 0:4571� 0:1588yþ 0:1742y2 � 0:0253y3 þ 0:0015y4;

y ¼ lnða=hÞ;1:6 < a=h < 100: (8)

In the regime a/h< 1, the variation Rcðq1=q2Þ for a given

a/h is insignificant; however, in the regime of a/h> 1,

Rcðq1=q2Þ for a given a/h changes by a factor in the single

digits, up to an order of magnitude as shown in Fig. 10. The

cylindrical case differs from the Cartesian case in one aspect,

namely, as a=h! 0, our numerical calculations show that

Rc converges to constant values, ranging from about 1 to

1.08, essentially for 0 < q1=q2 <1. The explanation fol-

lows. If a=h! 0, both the radius and thickness of the film

region are much larger than the radius a of the top cylinder,

as if two semi-infinite long cylinders are joining together

with radius ratio of b=a!1. In this case, the a-spot

theory11 gives a value of Rc in the range of 1 to 1.08, for

0 < q1=q2 <1 [c.f., Eq. (2) of Ref. 15].

In the limit of q1/q2 !1; Rc is simplified as (cf., Eq.

(B10) in Appendix B)

Rc

��
q1=q2!1

¼ 16

p

X1
n¼1

J2
1ðkna=bÞ
kna=b

cothðknh=bÞ
k2

nJ2
1ðknÞ

� 2a

ph
lnðb=aÞ;

(9)

which is also plotted in Fig. 10. Note that the exact theory

for q1/q2¼ 100 overlaps with Eq. (9). In the limit of q1/q2

!1; the minimum Rc ffi 0.48 occurs at a/h¼ 1.3, as shown

in Fig. 10.

In the opposite limit, q1/q2! 0, the region BCHG (Fig.

1) acts as a perfectly conducting material with respect to the

base region BCEF. Thus, the whole constriction interface BC
is an equipotential surface, as if L1¼ 0 and the external elec-

trode is applied directly to the interface BC for the cylindri-

cal geometry. This special case is analyzed by Timsit (cf.,

Fig. 7 and Eq. (18) of Ref. 9), whose Rc in the limit of q1/q2

! 0 is

Rc

��
q1=q2!0

¼ 4

p

X1
n¼1

cothðknh=bÞ sinðkna=bÞ
k2

nJ2
1ðknÞ

� 2a

ph
lnðb=aÞ:

(10)

Timsit acknowledges that Eq. (10) is accurate only for the

range of 0 < a=h � 0:5,9 beyond which the assumption of

equipotential contact that he introduces to derive Eq. (10)

does not hold and the result is not accurate anymore. This

insight of Timsit and the accuracy of his solution for a/
h< 0.5 are evident in Fig. 10, where Eq. (10) is plotted. Note

that the exact theory for q1/q2¼ 0.01 overlaps with Eq. (10)

up to a/h¼ 0.5. For a/h> 0.5, the exact calculation of Rc

[cf., Eq. (B8)] is also difficult in the limit of q1/q2! 0, since

the determinant of the matrix for solving the coefficient Bn in

Eq. (B6) is close to zero. [This is the main reason why the

scaling law given in Eq. (11) below is valid only for

a=h � 10]. Nevertheless, our calculations of Rc for q1/

q2¼ 0.01 shown in Fig. 10 are accurate up to a=h � 10,

from the convergence of results as sufficiently large number

of terms in the infinite series of Eqs. (B6) and (B8) are

employed in our numerical calculations. Thus, our agree-

ment with Timsit’s calculations for a/h< 0.5 may be consid-

ered as a validation of our series expansion method, and we

have extended Timsit’s calculations9 to a/h¼ 10 in Fig. 10.

We also spot checked our results against the MAXWELL 3D

code for the case q1/q2¼ 1.17

The vast amount of data collected from the exact calcu-

lations allows us to synthesize a simple scaling law for the

normalized contact resistance Rc in Eq. (7) and Fig. 10 as

(for L2� a or L2� h)

�Rc
a

h
;
q1

q2

� �
ffi �Rc0

a

h

� �
þ

D a
h

� �
2
� 2q1

q1 þ b a
h

� �
q2

; (11)

�Rc0 a=hð Þ ¼ �Rc a=hð Þjq1=q2!0¼
1� 2:2968 a=hð Þ þ 4:9412 a=hð Þ2�6:1773 a=hð Þ3
þ3:811 a=hð Þ4�0:8836 a=hð Þ5; 0:001 � a=h � 1;
0:295þ 0:037 h=að Þ þ 0:0595 h=að Þ2; 1 < a=h < 10;

8<
: (12)

D a=hð Þ ¼ 0:0184 a=hð Þ2þ0:0073 a=hð Þ þ 0:0808; 0:001 � a=h � 1;

0:0409x4 � 0:1015x3 þ 0:265x2 � 0:0405xþ 0:1065; x ¼ lnða=hÞ; 1 < a=h < 10;

(

b a=hð Þ ¼ 0:0016 a=hð Þ2þ0:0949 a=hð Þ þ 0:6983; 0:001 � a=h < 10:

(13)

FIG. 10. (Color online) �Rc as a function of a/h, for the cylindrical structure

in Figs. 1 and 3. The solid lines represent the exact calculations [Eq. (B8)],

where each curve consists of many combinations of b/a and b/h, with either

L2 � a or L2 � h. The dashed lines represent the limiting cases of

q1=q2 !1 [Eq. (9)] and q1=q2 ! 0 [Eq. (10)].
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This scaling law of cylindrical thin film contact resistance,

Eq. (11), is shown in Fig. 11, which compares very well with

the exact theory, for the range of 0< q1/q2<1 and 0.001

� a/h< 10. (We have not found the scaling law for a/h> 10

for general values of q1/q2, as explained in the preceding

paragraph.)

Similar to the Cartesian case, the field lines in the thin

film region are calculated from Eq. (B1), by numerically

solving the field line equation dz=dr ¼ ð@U�=@zÞ=ð@U�=@rÞ.
Figure 12 shows the field lines in the right half of Region II

(Fig. 1) for the special case of q1/q2¼ 1, with various aspect

ratios a/h. It is clear that the field lines are most uniformly

distributed over the conduction region when a/h¼ 1, which

is consistent with the smallest normalized contact resistance

Rc near a/h¼ 1 for q1/q2¼ 1 (Figs. 10 and 11). The field

lines are horizontally crowded around the corner of the con-

striction when a/h � 1 [Fig. 12(b)], and become vertically

crowded around the corner when a/h � 1 [Fig. 12(d)], lead-

ing to higher contact resistance in both limits, in the same

manner as already explained for the Cartesian case. In Fig.

13, the field lines are shown for the special case of a/h¼ 1,

with various resistivity ratios q1/q2. As q1/q2 increases,

Region II becomes more conductive relative to Region I, the

interface between Regions I and II (i.e., BC in Fig. 1)

becomes more and more like equipotential, therefore, the

field lines (and the current density) at the interface become

more uniformly distributed, as shown in Fig. 13(c).

IV. CONCLUDING REMARKS

This paper presents accurate analytic models which

allow ready evaluation of the contact resistance or constric-

tion resistance of thin film contacts with dissimilar materials

over a large range of parameter space. We show the large dis-

tortions of the field lines as a result of film thickness. The

models assume arbitrary aspect ratios, and arbitrary resistivity

ratios in the different regions for both Cartesian and cylindri-

cal geometries. From the large parameter space surveyed, it is

found that, at a given resistivity ratio, the thin film contact re-

sistance primarily depends only on the ratio of constriction

size (a) to the film thickness (h), as long as either L2� a or

L2� h. In the latter cases, the electrostatic fringe field is re-

stricted to the constriction corner only, and becomes insensi-

tive to the location of terminals for the thin film region.

The effects of dissimilar materials are summarized as

follows. If the constriction size (a) is small compared to the

film thickness (h), the thin film contact resistance is insensi-

tive to the resistivity ratio. However, if a/h> 1, the contact re-

sistance varies significantly with the resistivity ratio.

FIG. 12. Field lines in the right half of Region II of the cylindrical geometry

in Fig. 1 for q1/q2¼ 1 with (a) a/h¼ 0.1, (b) zoom in view of (a) for 0 � r/a
� 3, (c) a/h¼ 1, and (d) a/h¼ 10.

FIG. 11. (Color online) �Rcfor cylindrical thin film structures in Figs. 1 and

3, as a function of (a) aspect ratio a/h, and (b) resistivity ratio q1/q2; symbols

for the exact theory, solid lines for the scaling law Eq. (11).
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Typically the minimum contact resistance is realized with

a/h� 1, for both Cartesian and cylindrical cases. Various lim-

iting cases are studied and validated with known results.

Accurate analytical scaling laws are presented.

Finally, one may adapt the results in this paper to the

steady state heat flow in thermally insulated thin film struc-

tures with dissimilar thermal properties. This may be done

with Fig. 1 by replacing the electrical conductivity (1/qj) with

the thermal conductivity (jj), j¼ 1, 2, in the different regions,

assuming that the jj’s are independent of temperature.

APPENDIX A: THE CONTACT RESISTANCE OF
CARTESIAN THIN FILM

Referring to Fig. 1, we assume that L1� a, so that the

current flow is uniform at the end GH, far from the joint

region. For the two dimensional Cartesian channel, the y-

axis and z-axis are in the plane of the paper. The solutions of

Laplace’s equation are

Uþðy; zÞ ¼ A0 þ
X1
n¼1

An cos
npy

a

� �
e�

npz
að Þ � Eþ1z;

z > 0; yj j 2 ð0; aÞ;

U�ðy; zÞ ¼ V0 þ
X1
n¼1

Bn sinh
ðn� 1=2Þpz

b

� �	

þ Cn cosh
ðn� 1=2Þpz

b

� �

cos

ðn� 1=2Þpy

b

� �
;

z < 0; yj j 2 ð0; bÞ; (A1)

where Uþ and U- are the electrical potential in the region

BCHG and BCEF, respectively, Eþ1 is the uniform electric

fields at the end GH, V0 is the electrical potential at the ends

E and F (y¼6b), and An and Bn are the coefficients that

need to be solved.

Since the current flows parallel to the thin film boundary

EF, we have

@U�
@z
¼ 0; z ¼ �h; yj j 2 ð0; bÞ; (A2)

which leads to

Cn ¼ Bn coth
ðn� 1=2Þph

b

� �
: (A3)

At the interface z¼ 0, from the continuity of electrical poten-

tial and current density, we have the following boundary

conditions:

Uþ ¼ U�; z ¼ 0; yj j 2 ð0; aÞ; (A4a)

1

q1

@Uþ
@z
¼ 1

q2

@U�
@z

; z ¼ 0; yj j 2 ð0; aÞ; (A4b)

@U�
@z
¼ 0; z ¼ 0; yj j 2 ða; bÞ: (A4c)

From Eqs. (A4a) and (A1), the coefficient An is expressed in

terms of Bn

A0 ¼
X1
n¼1

Bn coth
ðn� 1=2Þph

b

� �
sin ðn� 1=2Þpa=b½ 	
ðn� 1=2Þpa=b

þ V0;

(A5a)

An ¼
X1
m¼1

Bm coth
ðm� 1=2Þph

b

� �
gmn;

gmn ¼
2

a

ða
0

cos
npy

a

� �
cos

ðm� 1=2Þpy

b

� �
dy; n 
 1

(A5b)

Combining Eqs. (A3), (A4b), (A4c), and (A5b), we obtain

Bn þ
1

n� 1=2

q2

q1

X1
m¼1

cnmBm coth
ðm� 1=2Þph

b

	 


¼ 2

ðn� 1=2Þp
q2

q1

sin ðn� 1=2Þpa=b½ 	
ðn� 1=2Þpa=b

; n ¼ 1; 2; 3:::

(A6)

where

cnm ¼ cmn ¼
X1
l¼1

lgnlgml; (A7)

and gnl and gml is in the form of the last part in Eq. (A5b).

Note that in deriving Eq. (A6), we have set aEþ1 ¼ �1 for

simplicity. It can be shown from Eq. (A6) that Bn / 1=n2 as

n!1 (c.f., Appendix B of Ref. 15). Thus, by writing Eq.

FIG. 13. Field lines in the right half of Region II of the cylindrical geometry

in Fig. 1 for a/h¼ 1 with (a) q1/q2¼ 0.1, (b) q1/q2¼ 1, and (c) q1/q2¼ 10.
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(A6) in an infinite matrix format, Bn can be solved directly

with guaranteed convergence.

The total resistance from EF to GH is R¼ (UF - UG)/

I¼V0/I, where I ¼ 2aWðEþ1=q1Þj j ¼ 2W=q1 is the total

current in the conducting channel, and W is the channel

width in the third, ignorable dimension that is perpendicular

to the paper. The contact resistance, Rc, is the difference

between the total resistance R and the bulk resistance (exte-

rior to ABCD) Ru ¼ q1L1=2aW þ q2L2=2hW. From Eq. (A1)

and (A5a), we find

Rc ¼
A0 � V0j j

I
� q2L2

2hW
¼ q2

4pW
Rc;

�Rc ¼ �Rc
a

b
;
a

h
;
q1

q2

� �
¼ 2p

q1

q2

X1
n¼1

Bn coth ðn� 1=2Þph=b½ 	

� sin ðn� 1=2Þpa=b½ 	
ðn� 1=2Þpa=b

� 2pðb� aÞ
h

; (A8)

which is the exact expression for the contact resistance of

Cartesian thin film of dissimilar materials (Fig. 1) for arbi-

trary values of a, b (b> a), h, and q1/q2. It appears in Eq. (1)

of the main text. Given the resistivity ratio q1/q2 and aspect

ratios a/h and a/b, the coefficient Bn is solved numerically

from Eq. (A6), Rc is then obtained from Eq. (A8).

In the limit of q1/q2 !1; Eq. (A6) may be simplified

to

Bn ¼
2

ðn� 1=2Þp
q2

q1

sin ðn� 1=2Þpa=b½ 	
ðn� 1=2Þpa=b

; n ¼ 1; 2; 3:::

(A9)

Thus, from Eq. (A8), Rc is found as

Rc
a

b
;
a

h

� �
¼ 4

X1
n¼1

coth ðn� 1=2Þph=b½ 	
n� 1=2

sin2 ðn� 1=2Þpa=b½ 	
ðn� 1=2Þpa=b½ 	2

�2pðb� aÞ=h; q1=q2 !1; (A10)

which appears as Eq. (2) in the main text.

APPENDIX B: THE CONTACT RESISTANCE OF THIN
FILM TO ROD GEOMETRY

Referring to Fig. 1, similar to the Cartesian case, we

also assume that L1� a, so that the current flow is uniform

at the end GH, far from the joint region. The solutions of

Laplace’s equation in the cylindrical geometry are9,15

Uþðr;zÞ ¼A0þ
X1
n¼1

AnJ0 anrð Þe�anz�Eþ1z; z> 0;r 2 ð0;aÞ;

U�ðr;zÞ ¼V0þ
X1
n¼1

Bn sinh
knz

b

� �
þCn cosh

knz

b

� �	 


� J0

knr

b

� �
; z< 0;r 2 ð0;bÞ; (B1)

where Uþ and U- are the electrical potential in the region

BCHG and BCEF, respectively, Eþ1 is the uniform electric

fields at the end GH, V0 is the electrical potential at the thin

film rim E and F (r¼ b), J0(x) is the zeroth order Bessel

function of the first kind, an and kn satisfy J1(ana)

¼ J0(kn)¼ 0, and An and Bn are the coefficients that need to

be solved.

Since the current flows parallel to the thin film boundary

EF, we have

@U�
@z
¼ 0; z ¼ �h; r 2 ð0; bÞ; (B2)

which leads to

Cn ¼ Bn coth
knh

b

� �
: (B3)

At the interface z¼ 0, from the continuity of electrical poten-

tial and current density, we have the following boundary

conditions:

Uþ ¼ U�; z ¼ 0; r 2 ð0; aÞ; (B4a)

1

q1

@Uþ
@z
¼ 1

q2

@U�
@z

; z ¼ 0; r 2 ð0; aÞ; (B4b)

@U�
@z
¼ 0; z ¼ 0; r 2 ða; bÞ: (B4c)

From Eqs. (B1) and (B4a), the coefficient An is expressed in

terms of Bn

A0 ¼
X1
n¼1

Bn coth
knh

b

� �
2J1 kna=bð Þ

kna=b
þ V0; (B5a)

An ¼
X1
m¼1

Bm coth
kmh

b

� �
gmn;

gmn ¼
2

a2J2
0ðanaÞ

ða
0

rdrJ0 anrð ÞJ0

kmr

b

� �
; n 
 1: (B5b)

Combining Eqs. (B3), (B4b), (B4c), and (B5b), we obtain

Bn þ
q2

q1

a

b

1

knJ2
1 knð Þ

X1
m¼1

cnmBm coth
kmh

b

� �

¼ q2

q1

2J1 kna=bð Þ
k2

nJ2
1 knð Þ

; n ¼ 1; 2; 3:::; (B6)

where

cnm ¼ cmn ¼
X1
l¼1

gnlgmlalaJ2
0 alað Þ; (B7)

and gnl and gml is in the form of the last part in Eq. (B5b).

Note that in deriving Eq. (B6), we have set aEþ1 ¼ �1 for

simplicity. It can be shown from Eq. (B6) that Bn / 1=k2
n

/ 1=n2 as n!1 (c.f., Appendix A of Ref. 15). Thus, by

writing Eq. (B6) in an infinite matrix format, Bn can be

solved directly with guaranteed convergence.

The total resistance from EF to GH is R¼ (UF - UG)/

I¼V0/I, where I ¼ pa2ðEþ1=q1Þ
�� �� ¼ pa=q1 is the total cur-

rent in the conducting channel. The contact resistance, Rc, is

the difference between the total resistance R and bulk resist-

ance (exterior to ABCD) Ru ¼ q1L1=pa2 þ ðq2=2phÞ ln
ðb=aÞ. From Eq. (B1) and (B5a), we find
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Rc ¼
A0 � V0j j

I
� q2

2ph
ln

b

a

� �
¼ q2

4a
Rc;

�Rc
a

b
;
a

h
;
q1

q2

� �
¼ 8

p
q1

q2

X1
n¼1

Bn coth knh=bð Þ J1 kna=bð Þ
kna=b

� 2a

ph
ln

b

a

� �
; (B8)

which is the exact expression for the contact resistance

between a thin film and a coaxial rod of dissimilar materials

(Fig. 1) for arbitrary values of a, b (b> a), h, and q1/q2. It

appears in Eq. (7) of the main text. Given the resistivity ratio

q1/q2 and aspect ratios a/h and a/b, the coefficient Bn is solved

numerically from Eq. (B6), Rc is then obtained from Eq. (B8).

In the limit of q1/q2!1; Eq. (B6) may be simplified to

Bn ¼
q2

q1

2J1 kna=bð Þ
k2

nJ2
1 knð Þ

; n ¼ 1; 2; 3::: (B9)

Thus, from Eq. (B8), Rc is found as

Rc
a

b
;
a

h

� �
ffi 16

p

X1
n¼1

J2
1ðkna=bÞ
kna=b

cothðknh=bÞ
k2

nJ2
1ðknÞ

� 2a

ph
lnðb=aÞ; q1=q2 !1; (B10)

which appears as Eq. (9) in the main text.
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