
Effects of magnetic shear on magneto-Rayleigh-Taylor instability

Peng Zhang,1 Y. Y. Lau,1,a) I. M. Rittersdorf,1 M. R. Weis,1 R. M. Gilgenbach,1

D. Chalenski,1 and S. A. Slutz2

1Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor,
Michigan 48109-2104, USA
2Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

(Received 25 October 2011; accepted 23 December 2011; published online 7 February 2012)

The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]

consists of a cylindrical metal liner enclosing a preheated plasma that is embedded in an axial

magnetic field. Because of its diffusion into the liner, the pulsed azimuthal magnetic field may

exhibit a strong magnetic shear within the liner, offering the interesting possibility of shear

stabilization of the magneto-Rayleigh-Taylor (MRT) instability. Here, we use the ideal MHD

model to study this effect of magnetic shear in a finite slab. It is found that magnetic shear reduces

the MRT growth rate in general. The feedthrough factor is virtually independent of magnetic shear.

In the limit of infinite magnetic shear, all MRT modes are stable if bu> 1, where bu is the ratio

of the perturbed magnetic tension in the liner’s interior region to the acceleration during implosion.
VC 2012 American Institute of Physics. [doi:10.1063/1.3680646]

I. INTRODUCTION

Recently, there has been a resurgence of interest in mag-

netic target fusion.1 The magnetized liner inertial fusion con-

cept, recently proposed at Sandia National Laboratories,2

utilizes magnetic compression of a cylindrical, metal liner to

adiabatically compress a laser-generated plasma. This plasma

is preheated and is embedded in an axial magnetic field. The

primary concern in this concept is the magneto-Rayleigh-

Taylor (MRT) instability of the liner that could disrupt the

symmetry of the implosion.3–13 As the axial current increases

during its risetime, the azimuthal magnetic field it creates

may diffuse into the liner, possibly creating a strong radial de-

pendence of the azimuthal magnetic field within the liner. To-

gether with the pre-existing axial magnetic field, the

magnetic field within the liner may exhibit a strong magnetic

shear, offering the interesting possibility of shear stabilization

of MRT.14,15 This paper examines this issue.

There is a long history of the study of an imploding liner.

The earliest theory most relevant to our study is Harris’ semi-

nal paper of 1962,3 and the latest is Ryutov’s theory of mag-

netic cushion.11 In between one may find the self-similar

solutions of Book and Bernstein,16,17 Han and Suydam,18

Cassibry et al.,19 Kleev and Velikovich,20 and Bud’ko et al.21

Reference may be made to simulations of spherical liners by

Parks22 and Samulyak et al.,23 cylindrical liners by Hammer

et al.,24 and the scaling studies by Hussey.25,26 Liberman

et al.27 gave an excellent review of the earlier works in Chap-

ters 5 and 6 of their book. Most recently, the effects of gradi-

ent on MRT were studied by Yang et al. for a particular

exponential profile in density and magnetic field.28 Sinars

et al. performed a series of controlled experiments of MRT

on solid metal liners using the 26-MA Z facility.8,9 We have

ongoing experiments12,13 exploring MRT growth on planar

foils, driven by a 1-MA Linear Transformer Driver (LTD).

Recently, we analytically studied MRT in a finite slab

using the ideal MHD model,10 addressing the problems of

feedthrough29,30 and anisotropy. The classical MRT results

of Taylor,30 Kruskal and Schwarzschild,4 Chandrasekhar,5

and Harris3 are all readily recovered as limiting cases. Since

the dominant effects of magnetic shear may be obtained

from an ideal MHD model, we shall continue to use such a

model to study the effects of magnetic shear on an imploding

liner, using a planar geometry as a further simplification.

Moreover, we assume that the acceleration is constant and

uniform in the unperturbed state, that the plasma is incom-

pressible, and that the subtle difference between cylindrical

and planar liner is ignored. In particular, the effects of radial

convergence (the Bell-Plesset effects31–36) are neglected in

the planar geometry. Another crucial assumption is that we

ignore the process of magnetic diffusion into the liner. We

simply assume that the equivalent azimuthal field varies in a

prescribed manner within the liner, from zero magnetic shear

to infinite magnetic shear. These two limiting cases can

actually be solved analytically in closed form for the sharp

boundary model. For intermediate magnetic shear, the MRT

eigenmodes need to be solved from a numerical integration

of a second order ordinary differential equation. Regardless

of the radial dependence of the azimuthal magnetic field, we

assume that there is equilibrium in the Cartesian analog.

That is, the plasma pressure is adjusted, so that every fluid

element undergoes constant acceleration in the lab frame in

the unperturbed state.

Section II describes the finite slab model, including the

effects of magnetic shear. The results from the model are pre-

sented in Sec. III. Concluding remarks are given in Sec. IV.

II. THE MODEL

The model under study is shown in Fig. 1. It consists of

three regions, I, II, and III. In the accelerated frame, the three

regions are stationary. In this rest frame of the interfaces, wea)Electronic mail: yylau@umich.edu.
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use the ideal MHD model. In each region, we assume that

the fluid is incompressible and is perfectly conducting. Thus,

we solve the equations: qð@=@tþ~v � rÞ~v ¼ �rpþ ~J � ~B

�qgx̂, @q=@tþr � ðq~vÞ ¼ 0, r �~v ¼ 0, @~B=@t ¼ r
�ð~v � ~BÞ, and r� ~B ¼ l0

~J . Here, q is the mass density, ~v
is the fluid velocity, p is the fluid pressure which is assumed

to be isotropic, ~J is the current density, ~B is the magnetic

field, g is a constant representing the gravity in the negative

x-direction [Fig. 1], x̂ is the unit vector, and l0 is the free

space permeability.

For simplicity, we assume region II has a constant

density q02, and Regions I and III have a negligible density

compared with q02 (i.e., q01 ! 0; q03 ! 0). Hereafter, all

unperturbed quantities are designated with a subscript “0.”

In equilibrium, the magnetic field, (0, B0y, B0z), within each

region of Fig. 1 is assumed to be,

B0z ¼ constant; �1 < x <1 ðAll RegionsÞ; (1)

B0yðxÞ ¼
B01y ¼ constant; x < 0 ðRegion IÞ
B02yðxÞ ¼ B01y � sinh 1� x=Dð Þ=d½ �

sinh 1=dð Þ ; 0 < x < D ðRegion IIÞ
B03y ¼ 0; x > D ðRegion IIIÞ

8><
>: ;

(2a)

(2b)

(2c)

where B02y(x) in region II is plotted in Fig. 2. If Fig. 1 is to

model the cylindrical geometry, Region II represents the cy-

lindrical liner of thickness D, Region I represents the region

exterior to the cylindrical liner, and Region III represents the

region interior to the cylindrical liner, y represents the azi-

muthal direction, and –x represents the radial direction. In

Eq. (1), B0z represents the pre-existing axial magnetic field.

Equation (2) represents the azimuthal magnetic field pro-

duced by the axial current on the liner; Eq. (2a) represents

the azimuthal magnetic field exterior to the cylindrical liner,

Eq. (2c) represents the azimuthal magnetic field interior to

the cylindrical liner (which is zero), and Eq. (2b) represents

the diffusion of the azimuthal magnetic field into the liner.

The x-dependence in Eq. (2b) signifies the magnetic shear,

measured by the dimensionless parameter d (Fig. 2). A small

d means that the azimuthal magnetic field barely diffuses

into the liner, corresponding to strong magnetic shear. The

infinite d limit corresponds to a constant magnetic shear

within the liner, i.e., dB0y/dx¼�B01y/D¼ constant, as shown

in Fig. 2 and Eq. (2b). Thus, d in some sense is analogous to

the “skin depth,” in units of the liner thickness D (Fig. 2).

Also shown in Fig. 2 is the case of zero magnetic shear, i.e.,

the azimuthal magnetic field penetrates the entire liner. This

case is included for completeness, as it has a closed form so-

lution10,13 and it sets the bounds of MRT growth from zero

to infinite magnetic shear (see Fig. 4).

We consider a small signal perturbation on the equilib-

rium of the 3-region geometry shown in Fig. 1, with the

defined magnetic field profile in Eqs. (1) and (2). Within each

region, I, II, or III, all perturbation quantities are assumed to

be of the form u1ðxÞeixt�ikyy�ikzz. The ideal MHD equations

are linearized to obtain the eigenvalue equation14 as

d

dx
q0 �x2
� �

þ 1

l0

~k � ~B0

� �2
� �

dn1x

dx

� 	

� k2 q0 �x2
� �

� g
dq0

dx
þ 1

l0

~k � ~B0

� �2
� �

n1x ¼ 0;

�1 < x <1; (3)

where ~B0 ¼ ŷB0yðxÞ þ ẑB0zðxÞ; ~k ¼ ŷky þ ẑkz; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y þ k2
z

q
;

and n1x is the perturbation displacement in the x-direction.

Note that Eq. (3) is valid for general density profile q0(x) and

for general magnetic field profiles B0y(x) and B0z(x). The

eigenvalue, x2, and the corresponding eigenfunction, n1x(x),

need to be solved numerically from Eq. (3). It is easy

to show from Eq. (3) that x2 is always real.5,14 The

MRT growth rate is given by c¼�ImðxÞ. The feedthrough

factor for the unstable mode, from the lower interface to

the upper interface, is obtained from its eigenfunction,

jn1xðx¼ DÞ=n1xðx¼ 0Þj. (In Fig. 1, since Region II has the

FIG. 1. (Color online) MRT model with two interfaces at x¼ 0 and at

x¼D. This paper concentrates on the case where Regions I and III have a

negligible mass density compared with Region II.

FIG. 2. (Color online) The profile of the y component of magnetic field

B02y(x) in Region II, 0< x<D, at various d, indicating different degree of

magnetic shear.
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highest density, it is clear that the lower interface (x¼ 0) is

RT-unstable, whereas the upper interface (x¼D) is RT-

stable. How the ripples on the unstable interface transmit to

the stable interface is known as “feedthrough”29 and is pri-

marily determined by the ratio of the unstable mode’s eigen-

function at the edges of the finite slab.10,29,30)

If the density profile q0(x) has a jump discontinuity, as

shown in Fig. 1, the direct numerical integration of Eq. (3) is

not straightforward. Instead, we analytically solved for the

solutions in Regions I and III and used these solutions as the

boundary conditions for the numerical solution in Region II.

The details are given in the Appendix. In Region II, 0 < x
< D, the eigenvalue equation Eq. (3) reads [cf. Eq. (A7)],

d

d�x

�
½�c2 þ b2

2ð�xÞ�
dn1x

d�x

	
� ½�c2 þ b2

2ð�xÞ�n1x ¼ 0: (4)

The boundary conditions to Eq. (4) are [cf. Eqs. (A5a) and (A5b)]

1

n1x

dn1x

d�x

����
�x¼0þ
¼ b2

l � 1

�c2 þ b2
l

; (5)

1

n1x

dn1x

d�x

����
�x¼kD�

¼ � b2
u þ 1

�c2 þ b2
u

; (6)

where �x ¼ kx, �c ¼ c=
ffiffiffiffiffi
kg
p

. In Eqs. (4)–(6),

b2
l ¼
ð~k � ~B0Þ2I
l0q02ðkgÞ ; b2

2 ¼
ð~k � ~B0Þ2II
l0q02ðkgÞ ; b2

u ¼
ð~k � ~B0Þ2III
l0q02ðkgÞ ; (7)

b2ð�xÞ ¼ bu þ ðbl � buÞ
sinh½ð1� �x=kDÞ=d�

sinhð1=dÞ : (8)

Note that the magnetic field effects in the three regions, I, II,

III, enter through the normalized magnetic tension, b2
‘ , b2

2

and b2
u, respectively. The magnetic shear effect enters

through d in b2ð�xÞ, given in Eq. (8). Equations (4)–(6) may

then be solved numerically once b‘, bu, and d are specified.

As a check, let us consider the special case where there

is no magnetic tension in Regions I and III, i.e., b‘ ¼ bu ¼ 0.

The MRT in this case was shown by Harris3 to be identical

to the classical Rayleigh-Taylor instability on a finite slab

that was treated by Taylor.29,30 For this case, we have b2¼ 0

for all x. An eigenfunction to Eq. (4) is clearly n1xð�xÞ ¼ e��x ,

whose eigenvalue is �c2 ¼ 1, as is obvious from either Eq. (5)

or (6). This eigenvalue corresponds to the familiar MRT dis-

persion relation for the unstable mode, x2 ¼ �kg, whose

feedthrough factor is e�kD. The other eigenfunction to

Eq. (4) is n1xð�xÞ ¼ e�x , whose eigenvalue is �c2 ¼ �1, as is

also readily obtained from either Eq. (5) or Eq. (6). This

eigenvalue corresponds to the stable modes in the R-T dis-

persion relation, x2 ¼ kg, whose feedthrough factor is ekD.

These results are consistent with Taylor and Harris.10

In the limits of zero and of infinite magnetic shear, the

magnetic field within Region II is a constant, whose normal-

ized magnetic tension is designated by b2
2. In terms of b2

‘ , b2
2,

and b2
u, the normalized eigenfrequency, �x ¼ x=

ffiffiffiffiffi
kg
p

, is gov-

erned by the 4th degree polynomial, �x4 � �R �x2 þ �S ¼ 0,

where

�R ¼ 2b2
2 þ ðb2

u þ b2
‘Þ coth kD;

�S ¼ b4
2 � 1þ b2

‘ ðb2
2 coth kDþ b2

u þ 1Þ þ b2
uðb2

2 coth kD� 1Þ:
(9a,b)

The unstable MRT mode exists if and only if �S < 0: It then

follows from Eq. (9b) that the most dangerous MRT mode

is the one with b‘ ¼ 0, or equivalently, ð~k � ~B0ÞI ¼ 0. The

mode that does not bend the magnetic field line on the lower

interface is the most difficult to stabilize.5,6,10,14 It is of inter-

est to note that this most dangerous mode, with b‘ ¼ 0 or

ð~k � ~B0ÞI ¼ 0, corresponds to waves which travel perpendicu-

lar to the magnetic field, a property shared by purely magne-

tosonic waves. In the numerical results presented in Sec. III,

we, therefore, concentrate on this case.

In Eqs. (9a) and (9b), the zero magnetic shear case cor-

responds to b2 ¼ b‘ since B02y(x)¼B01y¼ constant in

Eq. (2). In this case, the b‘ ¼ 0 is always unstable regardless

of the axial magnetic field B0z, and the normalized growth

rate for this zero magnetic shear case is given by

�c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4

ucoth2ðkDÞ þ 4ð1þ b2
uÞ

q
� b2

ucothðkDÞ
2

: (10)

Equation (10) is easily derived from Eqs. (9a,b), where
�R ¼ b2

ucoth kD; �S¼ �1� b2
u. Equation (10) is also plotted in

Figs. 3 and 4 as dotted curves. The infinite magnetic shear

case corresponds to b2 ¼ bu (Fig. 2), in which case the

b‘ ¼ 0 mode (and therefore all MRT modes) are stabilized if

bu � 1.

III. RESULTS

In this section, we shall concentrate mainly on the most

dangerous MRT mode with b‘ ¼ 0, i.e., ð~k � ~B0ÞI ¼ 0, as

explained toward the end of Sec. II. Figure 3 shows the nor-

malized MRT growth rate, �c ¼ �Imðx1Þ=
ffiffiffiffiffi
kg
p

, for this

b‘ ¼ 0 case, as a function of kD. Various combinations of

magnetic field tension in Region III, bu, and of the magnetic

shear (d) are presented. These results were obtained from the

numerical solutions to Eqs. (4)–(6). For a given d, the MRT

growth rate decreases as bu increases (Fig. 3). As the mag-

netic shear increases, i.e., as d decreases from Fig. 3(a) to

Fig. 3(d), the MRT growth rate decreases in general, demon-

strating the stabilizing influence of magnetic shear. How-

ever, the MRT growth rate cannot be completely eliminated

by magnetic shear, even when d is close to zero (but not

equal to zero), as shown in Fig. 3(d).

Figure 4 shows the effect of magnetic shear (d) for the

specific case of b‘ ¼ 0, bu¼ 1. It is clear that increasing

magnetic shear reduces the MRT growth rate. However, the

MRT growth rate remains significant, about 40 percent of

(kg)1/2 even when d¼ 0.01 (Fig. 4). If d¼ 0 (infinite mag-

netic shear), all MRT modes are stabilized if bu � 1. This is

consistent with the numerical calculation of Eqs. (4)–(6), as

shown in Figs. 3 and 4.

For the most dangerous mode, b‘ ¼ 0, there is the rela-

tionship jky=kzj ¼ jB0z=B01yj, from which it is easy to show

that b2
u ¼ 2kD=ð1þ B2

01y=B2
0zÞ ¼ 2kzD=½ðB01y=B0zÞð1þ B2

01y=
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B2
0zÞ

1=2� upon using the equilibrium condition q02Dg ¼ B2
01y=

2l0 for the configuration of Fig. 1. We may then re-plot

Fig. 3 to show the normalized MRT growth rate �c as a func-

tion of kzD at a fixed value of B2
01y=B2

0z. Figure 5 shows such

graphs with B2
01y=B2

0z¼ 0.1, 1.0, and 10. These graphs show

the effect of magnetic shear (d) on the most unstable mode,

b‘ ¼ 0. If the magnetic shear is small or moderate, e.g.,

d¼ 104 and d¼ 1 in Fig. 5, the normalized MRT growth rate

increases as a function of kzD. If the magnetic shear is large,

e.g., d¼ 0.1 and d¼ 0.01 in Fig. 5, the growth rate decreases

as kzD increases. For infinite magnetic shear, �c¼ 0 for

bu � 1, as shown in Figs. 5(a) and 5(b). At a given value of

d, as the magnetic field ratio B2
01y=B2

0z increases, bu

decreases; thus the MRT growth rate increases, as shown in

Fig. 5, which is consistent with the results shown in Figs. 3

and 4.

Figure 5 suggests that an axial magnetic field compara-

ble to the azimuthal magnetic field is needed to suppress

MRT growth. A plausible way to generate such a high axial

magnetic field is to surround the metallic liner with a thick,

low density foam. As this foam is imploded radially, the (ini-

tially low) axial magnetic field that is imbedded in it may be

compressed to a high value. The MRT growth in such a thick

foam (low aspect ratio) may not pose as a serious problem,

or one could tailor its density to stabilize the implosion.

The feedthrough factor, equal to the perturbation dis-

placement ratio jn1xðx ¼ DÞ=n1xðx ¼ 0Þj, may also be calcu-

lated from Eqs. (4)–(6). Figure 6(a) shows the feedthrough

factor for the b‘ ¼ 0, d¼ 0.1 case, as a function of kD at vari-

ous values of bu. The feedthrough factor is reduced with

increasing bu, in which case the upper interface is less likely

to form a ripple because of the magnetic tension there. Thus,

the MRT growth at the lower interface is less likely to be

transmitted to the upper interface.10 Figure 6(b) shows that

the feedthrough factor is virtually independent of the mag-

netic shear (d). This is verified by the asymptotic dependence

of the feedthrough factors (dotted lines in Fig. 6), which is

derived for the case of no magnetic shear effect, given by

Eqs. (11) and (12) of Ref. 10. It is interesting to note that the

asymptotic formulas for large kD are already very accurate

when kD> 2.

IV. CONCLUDING REMARKS

This paper presents a simple, ideal MHD model to study

the effects of magnetic shear on MRT in a magnetized liner.

While MRT growth may not be completely eliminated even

FIG. 3. (Color online) The normalized MRT growth rate for the b‘ ¼ 0

case, as a function of kD, at various bu, for (a) d¼ 104, (b) d¼ 1, (c) d¼ 0.1,

(d) d¼ 0.01. The solid lines show the numerical solutions from Eqs. (4)–(6),

the dotted lines show the analytical results of Eq. (10), i.e., the zero mag-

netic shear case.

FIG. 4. (Color online) The normalized MRT growth rate for the case of

b‘ ¼ 0 and bu¼ 1, as a function of kD, at various d. The solid lines are from

Eqs. (4)–(6), the dotted line is from Eq. (10), i.e., the zero magnetic shear

case, and the dashed line indicates the infinite shear case (d¼ 0), where

MRT does not exist if bu � 1.
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with strong magnetic shear, magnetic shear does reduce the

MRT growth rate in general. The feedthrough factor is also

computed and is found to be insensitive to the magnetic

shear. In the limit of infinite magnetic shear, all MRT modes

are stabilized if bu � 1. The full implications of MRT on the

magnetized liner inertial fusion concept [2] await further

studies.
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APPENDIX

From Eq. (3) of the main text, the effects of magnetic

field enter through the term ~k � ~B0. For each Region of Fig. 1,

this term reads,

ð~k � ~B0ÞI ¼ kyB01y þ kzB0z¼ constant; x < 0 ðRegion IÞ

ð~k � ~B0ÞII ¼ kyB01y
sinh 1� x=Dð Þ=d½ �

sinh 1=dð Þ þ kzB0z; 0 < x < D ðRegion IIÞ

ð~k � ~B0ÞIII ¼ kzB0z ¼ constant; x > D ðRegion IIIÞ;

8>><
>>:

(A1)

according to Eqs. (1) and (2). Thus, the solution to Eq. (3) in

Regions I and III is simply,

n1x ¼ n1xðx ¼ 0Þekx; x < 0 ðRegion IÞ ; (A2a)

n1x ¼ n1xðx ¼ DÞe�kðx�DÞ; x > D ðRegion IIIÞ : (A2b)

FIG. 5. (Color online) The normalized MRT growth rate versus kzD for the

case of b‘ ¼ 0 and (a) B01y
2/B0z

2¼ 0.1, (b) B01y
2/B0z

2¼ 1.0, and (c) B01y
2/

B0z
2¼ 10, at various d. The solid lines show the numerical solutions from

Eqs. (4)–(6), the dotted lines show the analytical results of Eq. (9), for both

the zero magnetic shear case [cf. Eq. (10)] and infinite magnetic shear case.

FIG. 6. (Color online) The feedthrough factor as a function of kD, for (a)

b‘ ¼ 0, d¼ 0.1 at various bu from 0 to 3, (b) b‘ ¼ 0, bu¼ 1, at various d from

104 to 0.01. The dashed lines are given by Eqs. (11) and (12) of Ref. 10.
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To solve Eq. (3) in Region II, we first integrate Eq. (3)

across the two interfaces, at x¼ 0 and x¼D, respectively, to

obtain

�
q0ðxÞc2 þ 1

l0

ð~k � ~B0Þ2
� �

dn1x

dx

	����
x¼0þ

x¼0�
¼ �k2gq02n1xðx ¼ 0Þ;

(A3a)

�
q0ðxÞc2þ 1

l0

ð~k � ~B0Þ2
� �

dn1x

dx

	����
x¼Dþ

x¼D�
¼ þk2gq02n1xðx¼ DÞ;

(A3b)

where q02 is the constant mass density of Region II. Upon

using Eqs. (A2a) and (A2b) into Eqs. (A3a) and (A3b), we

obtain

c2 þ 1

l0q02

~k � ~B0

� �2
����
x¼0þ

� �
1

kn1x

dn1x

dx

����
x¼0þ

� 1

l0q02

~k � ~B0

� �2
����
x¼0�
¼ �kg; (A4a)

1

l0q02

~k � ~B0

� �2
����
x¼Dþ

� c2 þ 1

l0q02

~k � ~B0

� �2
����
x¼D�

� �
1

kn1x

dn1x

dx

����
x¼D�
¼ þkg:

(A4b)

Assuming that there is no surface current at both interfaces

at x¼ 0 and x¼D, as the surface current spreads out to a dis-

tance of order the “skin depth” even when that “skin depth”

is small, we have ð~k � ~B0Þ2jx¼0þ ¼ ð~k � ~B0Þ2jx¼0� and

ð~k � ~B0Þ2jx¼D� ¼ ð~k � ~B0Þ2jx¼Dþ for the present model. Equa-

tions (A4a) and (A4b) may then be expressed in the normal-

ized form, respectively, as

1

n1x

dn1x

d�x

����
�x¼0þ
¼ b2

l � 1

�c2 þ b2
l

; (A5a)

1

n1x

dn1x

d�x

����
�x¼kD�

¼ � b2
u þ 1

�c2 þ b2
u

; (A5b)

where �x ¼ kx, �c ¼ c=
ffiffiffiffiffi
kg
p

, b2
l ¼

ð~k �~B0Þ2I
l0q02ðkgÞ, b2

u ¼
ð~k �~B0Þ2III
l0q02ðkgÞ.

Equations (A5a) and (A5b) are Eqs. (5) and (6) of the main

text. From Eq. (A1), it can be easily shown that

b2ð�xÞ ¼
ð~k � ~B0ÞIIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0q02kg
p ¼ bu þ ðbl � buÞ

sinh½ð1� �x=kDÞ=d�
sinhð1=dÞ ;

(A6)
where we have used Eq. (2b) of the main text. Thus, in

Region II, the governing Eq. (3) becomes

d

d�x

�
½�c2 þ b2

2ð�xÞ�
dn1x

d�x

	
� ½�c2 þ b2

2ð�xÞ�n1x ¼ 0; 0 < x < D ;

(A7)

which is Eq. (4) in the main text.
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