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This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in

an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value

is included in each region: liner, its interior, and its exterior. The dispersion relation is solved

exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m),

liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial

acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode.

For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simu-

lation results for an equilibrium model that includes a pre-existing axial magnetic field and a pre-

heated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the

m¼ 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the im-

plosion, and that the m¼ 0 sausage-MRT mode dominates at the main part of implosion. This anal-

ysis also sheds light on a puzzling feature in Harris’ classic paper of MRT [E. G. Harris, Phys.

Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical struc-

tures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915520]

I. INTRODUCTION

When a strong axial current is present, the dominant

instabilities on a cylindrical plasma column are the sausage

and kink mode, with azimuthal mode numbers, m¼ 0 and

m¼ 1, respectively. If the plasma column is in the form of a

cylindrical liner of outer radius R and thickness D, the sau-

sage and kink mode are still the dominant modes if it is

assumed that there is a sufficient internal pressure in the cen-

tral region of the liner to prevent any radial acceleration of

the liner. However, if this internal pressure is weak, there

would be inward acceleration of the liner, and the outer inter-

face of the liner would be subjected to the magneto-

Rayleigh-Taylor instability (MRT).1–5 If, on the other hand,

the internal pressure in the central region is very high, there

is a radially outward acceleration and the inner interface of

the cylindrical liner would be subjected to MRT. In the rest

frame of the interface, the effective gravity, g, is equal to the

negative of the radial acceleration. Thus, g> 0 (g< 0) corre-

sponds to implosion (stagnation or explosion), and the con-

ventional sausage and kink mode described above

correspond to g¼ 0. It is clear that the nature of sausage,

kink, MRT, and the coupling among them depends much on

the cylindrical geometry, on the magnitude and sign of g, on

the aspect ratio, R/D, and on the dominant magnetic field. In

this paper, we use the ideal MHD model and present a gen-

eral linear stability analysis including the m¼ 0 MRT-

sausage mode and the m¼ 1 MRT-kink mode, for arbitrary

value (and sign) of g, for arbitrary aspect ratio R/D (>1), and

for general values of the axial magnetic field outside, inside,

and within the liner.

The coupling of the m¼ 0 MRT and sausage mode, and

the coupling of the m¼ 1 MRT and kink mode, has received

only scant attention in the past.4–7 They have become an im-

portant issue in the recent magnetized liner inertial fusion

(MagLIF) experiments8–14 on the Z-machine at Sandia

National Laboratories. While there have been extensive stud-

ies of MRT on the MagLIF liner without an axial magnetic

field,9–11 many of these MRT theories were based on a slab

geometry which is incapable of describing the conventional

sausage mode and kink mode.2–4,15–18 Without an axial mag-

netic field, MRT structure is typically oriented along nearly

horizontal planes perpendicular to the z-axis with limited or

no pitch.12,13 However, with the inclusion of an axial mag-

netic field, helical structures were found with significant in-

clination during the implosion phase.12,13 In the fully

integrated MagLIF experiments (with axial magnetic field

and a preheated fuel in the central region inside the liner),

possible kink-like perturbations of the plasma column were

reported at stagnation.14 These non-axisymmetric MHD

activities are yet to be explained.

To keep the problem analytically tractable, we use ideal

MHD and apply a linear stability analysis on a sharp bound-

ary model (Fig. 1). For the linear stability analysis, we

assume (a) that the liner has a uniform and constant density,

the density elsewhere is practically zero in comparison, (b)

that there is a constant, uniform axial magnetic field in each

region, (c) that the azimuthal magnetic field, generated bya)Corresponding author: yylau@umich.edu
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the axial current (a surface current), exists only in the exte-

rior region (r>R), (d) that R and D are constants, and (e)

that the effective gravity, g, is uniform and constant. These

assumptions may be justified if we pretend that the liner is

subjected to an instantaneous, initial inward acceleration

(¼ �g), so that the MRT mechanism is switched on, but

without creating any motion of the liner so that R, D, and the

liner density are essentially constants. Such a simplified con-

ceptual model enables a close examination of the relation

between a purely MRT mode (one without any internal pres-

sure to reduce the acceleration), and a purely sausage and

kink mode (one with g¼ 0). In so doing, we are able to

resolve a little-noted puzzle in Harris’ classic paper which

shows that there is a finite MRT growth rate, c ¼
ffiffiffiffiffiffiffiffi
g=R

p
, for

a thin shell even when k¼m¼ 0, where R is the radius of the

thin shell and k is the axial wavenumber of the imploding

thin liner.4 This is a surprising result because the MRT

growth rate is expected to be c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

h þ k2
z Þ

1=2g
q

, and for m

and k equal to zero, we would have c¼ 0. The nature of this

finite growth rate of Harris and its relation to the m¼ 0 sau-

sage mode will be discussed.

In experiments, the axial current has a finite rise time.

Quantities such as the outer radius R, and g will then evolve

in time. In fact, the effective gravity g even changes sign from

implosion to stagnation. To obtain some rough understanding

of the relative importance of MRT, sausage, and kink, on a

liner like MagLIF, we use the HYDRA simulation code19 to

examine the temporal evolution of a cylindrical liner with a

realistic current rise profile reaching �20 MA in 150 ns, a pre-

seeded axial magnetic field of 10 T, and a preheated fuel

(�250 eV), similar to an ideal version of the fully integrated

MagLIF experiments by Gomez et al.14 From 1D HYDRA

simulations, we extract the instantaneous “equilibrium” pa-

rameters for R, D, g, Bh;B03, etc., and apply these profiles to

the linear stability theory of the sharp boundary model. This

analysis, reported below, reveals several stages of evolution

of sausage, kink, and MRT, from implosion to stagnation.

Figure 5 below illustrates the relative importance of the m¼ 0

and m¼ 1 modes at the different stages.

We shall first consider the equilibrium model (Fig. 1), in

which the internal pressure in each region is assumed to be

adjusted so that g may be assigned an arbitrary constant

value (zero, positive, or negative), for a given set of axial

and azimuthal magnetic fields. The results of the stability

analysis for general m and k are presented. Numerical results

are presented only for the m¼ 0 and m¼ 1 modes.

II. EQUILIBRIUM AND STABILITY

The model under study is shown in Fig. 1. It consists of

three regions, I, II, and III. In each region, we assume that

the fluid is perfectly conducting. We solve the ideal MHD

equations: qð@=@tþ v � rÞv ¼ �rpþ J� Bþ qgr, @q=@t
þr � ðqvÞ ¼ 0, @B=@t ¼ r� ðv� BÞ, and r� B ¼ l0J in

the cylindrical coordinates. Here, q is the mass density, v is

the fluid velocity, p is the fluid pressure which is assumed to

be isotropic, J is the current density, B is the magnetic field,

g is the gravity which is positive when acceleration is radi-

ally inward [Fig. 1], r is the unit radial vector, and l0 is the

free space permeability.

In equilibrium, the magnetic field in the three regions, I

(r>R), II (a< r<R), and III (r< a) is assumed to be, respec-

tively, B01¼ zB01þ hBhR/r, B02¼ zB02, and B03¼ zB03,

where B01, B02, B03, and Bh are constants. We further assume

that the mass density in each region is also constant with the

liner density being the dominant, i.e., q01 � q02, and q03

� q02. For a scenario such as MagLIF, region I is a vacuum

field region, region II is the liner region, and region III is the

fuel region. The equilibrium pressure profile p0(r) is adjusted

so that it satisfies the equilibrium condition,20 for all r,

@

@r
p0 rð Þ þ B2

0 rð Þ
2l0

 !
þ B2

0h rð Þ
rl0

¼ q0 rð Þg; (1)

where B0 ¼ jB0j is the magnitude of the equilibrium magnetic

field B0 and B0h(r) is the azimuthal component of B0. We

assume that the effective gravity, g, is a constant, though fully

incompressible flow would require a non-uniform g to account

for cylindrical convergence and mass conservation consistently.

This may be justified if we use 1D HYDRA simulations to pro-

vide these equilibrium profiles, which fully take into account

compressibility of the fluid as it implodes. Also, the thickness

of the shell remains on the order of 100s of micrometers, which

is relatively thin so that the effect of non-uniform g remains

small. Integrate Eq. (1) across region II to yield

gq02D ¼ pI þ
B2

01 þ B2
h

2l0

" #
� pIII þ

B2
03

2l0

" #
; (2)

where D¼R – a is the liner thickness, pI is the equilibrium

fluid pressure in region I at the outer liner surface, and pIII is

the equilibrium fluid pressure in region III at the inner liner

surface. The acceleration, which equals �g, may therefore

be driven by an arbitrary mix of fluid pressure (pIII; pIÞ or

magnetic pressure (B01;B03;BhÞ, as long as the above equi-

librium conditions are satisfied. Note that if the internal pres-

sure pIII is dominant among all pressures, as in the

stagnation stage, then g is negative (acceleration is radially

outward) in Eq. (2). Hereafter, we will call the case g¼ 0

pure kink mode and pure sausage mode, i.e., the total pres-

sure exactly balances when there is no acceleration in the

laboratory frame. On the other hand, if one square bracket in

FIG. 1. MHD model for an imploding cylindrical liner. Uniform axial mag-

netic field is included in each region: liner (a< r<R), its interior (r< a),

and its exterior (r>R), as B02, B03, and B01, respectively.
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Eq. (2) is much larger than the other square bracket, so that jgj
is maximized, we call the unstable mode pure MRT or pure

RT mode. In general, jgj is between zero and its maximum

value; and the resulting instability is somewhere between a

pure sausage (or kink) mode and a pure MRT mode.

We next consider a small signal perturbation of the

form, u1ðrÞeixtþimh�ikz, on the equilibrium of the 3-region ge-

ometry shown in Fig. 1 and assume these perturbations to be

incompressible (r � v ¼ 0). For the above sharp boundary

model, the linearized MHD equations for each region may be

distilled into a second order ODE for the perturbed displace-

ment of the plasma, the solution of which requires two bound-

ary conditions, plus constraint on the perturbed magnetic field:

(1) A perfect conductor (ideal MHD) requires that the mag-

netic field component normal to the liner surface to be identi-

cally zero, which links the perturbation magnetic field and

displacement and (2) The continuity of total pressure across

each interface. This leads to a dispersion relation of the form,

Ax4 � Bx2 þ C ¼ 0; (3)

A ¼ ðX1X2 þ 1Þ=ðX2
3k2aRÞ; (4)

B ¼ b1 þ b2; (5)

C ¼ k2V2
02ðk2V2

02Aþ b2Þ

þ k2V2
03ðIjmj=I0jmjÞð�k2V2

02X2=X3 þ jkjg0Þ þ k2gg0: (6)

In Eqs. (4)–(6), X1¼Kjmj Î
0
jmj � IjmjK̂

0
jmj, X2¼ Î jmjK

0
jmj �K̂ jmjI

0
jmj,

X3¼ Î
0
jmjK

0
jmj�K̂

0
jmjI
0
jmj, Ijmj¼IjmjðjkjaÞ, Kjmj¼KjmjðjkjaÞ, Î jmj

¼IjmjðjkjRÞ, K̂ jmj¼KjmjðjkjRÞ, b1¼2k2V2
02A, b2¼�½ðX1=X3Þ

jkjg0 þðX2=X3Þjkjg�, V02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

02=l0q02

p
, V03¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

03=l0q02

p
,

g0 ¼gþð1=l0q02RÞ ½B2
hþðK̂ jmj=K̂

0
jmjjkjRÞð�mBhþkRB01Þ2�,

Im and Km are, respectively, the modified Bessel function of

order m of the first and second kind, and a prime denotes dif-

ferentiation of these modified Bessel functions with respect to

their arguments. Of the four eigenvalues of x in the dispersion

relation (3), we shall henceforth consider only the most unsta-

ble mode with the largest negative imaginary part of x. This

is the exponentially growing mode, the second root is expo-

nentially decaying and the 3rd and 4th are purely oscillatory.

The numerical values of the growth rate, obtained from Eq.

(3), are presented below. They have all been validated with an

independent, alternative approach that directly solved the

governing differential equation including q03>0.

III. m 5 0 AND m 5 1 MODE WITH g 5 0 AND
NONZERO g

The difference between a pure sausage mode, and a pure

MRT mode, both with m¼ 0, is shown in Fig. 2(a), where

we have set the axial magnetic field equal to zero every-

where. We further assume that pI¼ 0, and Eq. (2) then reads,

gq02D ¼
B2

h

2l0

� pIII: (7)

For the pure sausage mode, we set pIII ¼ B2
h=2l0, so that

g¼ 0. The normalized growth rate of this pure sausage mode

is plotted by the solid lines in Fig. 2(a) for various aspect

ratios, from a thin shell (R/D¼ 10) to an almost solid cylin-

der (R/D¼ 1.0101). Note that for a thin liner, R/D � 1, the

pure sausage mode growth rate, c¼�Im(x), approaches the

asymptotic limit for small kR,

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

h

l0q02DR

s
; pure sausage mode kR� 1;R=D� 1ð Þ :

(8)

Equation (8) may be derived from Eq. (3) in the asymptotic

limits shown, after setting g¼ 0.

For the pure MRT mode, there is no internal pressure,

pIII¼ 0, in Eq. (7). There is then a maximum inward acceler-

ation, with a maximum g ¼ gmax ¼ B2
h=2l0q02D according

to Eq. (7). The normalized growth rate for this pure MRT

mode with m¼ 0 is given by the dashed curves in Fig. 2(a).

Asymptotically, one may show from Eq. (3) that, for a thin

liner, R/D� 1, and small kR,

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

h

2l0q02DR

s
; pure MRT mode kR� 1;R=D� 1ð Þ :

(9)

Equation (9) is identical to Eq. (61) of Harris4 in the limit

k¼ 0, m¼ 0, thus confirming Harris’ finite MRT growth rate

in this limit for a collapsing thin shell. Note from Eqs. (8) and

(9) that the pure MRT mode has a growth rate lower than the

pure sausage mode in the long axial wavelength limit. Since

the value of g ranges between g¼ 0 and g¼ gmax, we con-

clude that inward acceleration (g> 0) tends to stabilize the

long wavelength sausage mode, and this is even more appa-

rent in Fig. 2(a) for lower aspect ratios, R/D¼ 2, and

R/D¼ 1.0101. This is also true when B0z/Bh¼ 0.1, as shown

in Fig. 2(c). However, if the axial magnetic field is increased

to B0z/Bh¼ 1 (Fig. 2(e)), the pure sausage mode is stable for

all R/D, and the inward acceleration destabilizes the pure sau-

sage mode for the R/D¼ 10 case (and only for this case

among the values of R/D shown in Fig. 2(e)). Note that the

inward acceleration (g> 0) tends to destabilize the short

wavelength m¼ 0,1 modes, when kR> 1. This result is impor-

tant when we consider the experiments of Sinars et al.9,10 and

simulations and experiments of McBride et al.11 where such

modes are observed. They show that while pre-seeded m¼ 0

(k> 0) modes persist, retaining azimuthal symmetry, unmodi-

fied liners show a rapid departure from azimuthal symmetry.

One explanation with our theory is while the growth rate for

m¼ 0 (k> 0) remains the largest, m> 0 and k> 0 modes have

comparable enough growth rates that, unless preseeded with

m¼ 0, directly compete and destroy the m¼ 0 symmetry. In

fact, to accurately simulate a typical unseeded liner, fully 3D

modes (m,k> 0) must be allowed (2D simulations are insuffi-

cient), though even this can be challenging11 and is discussed

briefly in the conclusion.

For the kink mode (m¼ 1), an inward acceleration

(g> 0) tends to destabilize the kink mode for long axial

wavelength (kR� 1), regardless of the value of B0z/B0h¼ 0,

0.1 or 1, as shown Figs. 2(b), 2(d), and 2(f). The curves with
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g¼ 0 in Figs. 2(d) and 2(f) show disappearance of m¼ 1

instability for sufficiently large kR. This only means that the

Kruskal-Shafranov criterion for kink mode stabilization is

satisfied for sufficiently large kR.20 Note that the inward

acceleration (g> 0) tends to destabilize the short wavelength

m¼ 1 mode, when kR> 1.

To gain some understanding of the coupling between

MRT, sausage and kink mode at the stagnation stage, we

now assume that B01¼B02 is so small compared with B03

that we may now set B01¼B02¼ 0. We further assume B03/

Bh¼ 1. The equilibrium condition, Eq. (2), then reads,

gq02D ¼ pI � pIII: (10)

The pure sausage and pure kink mode assumes PI¼PIII so

that g¼ 0. Their normalized growth rates are shown by the

solid lines in Fig. 3(a) for m¼ 0, and in Fig. 3(b) for m¼ 1.

The pure MRT case assumes PI¼ 0 in Eq. (10), and the nor-

malized growth rates are shown by the dotted lines in Fig. 3,

FIG. 2. The normalized growth rate calculated from Eq. (3) for (a), (c), (e), the m¼ 0 mode, and (b), (d), (f), the m¼ 1 mode, with B0z/Bh¼ 0, 0.1, and 1, and R/

D¼ 1.0101 (almost a solid cylinder), 2, and 10, where B0z¼B01¼B02¼B03. Here, g¼ 0 corresponds to the pure sausage mode (m¼ 0), or the pure kink mode

(m¼ 1), and g¼ gmax> 0 corresponds to the pure MRT mode for an imploding liner.
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where we set pIII ¼ �gmaxq02D ¼ B2
h=l0. From Fig. 3, we

see that the radially outward acceleration (g< 0) destabilizes

only the thinnest liner for the sausage mode, while all thick-

nesses are destabilized for the kink mode. Overall, the m¼ 1

MRT mode has a higher growth rate during this deceleration

phase with a highly compressed axial field. This may have

implications for MagLIF as we will discuss below.

We next calculate the instantaneous instability growth

rate for the m¼ 0 and the m¼ 1 modes according to Eq. (3),

using the data from 1D HYDRA to obtain the instantaneous

equilibrium profiles. The m¼�1 mode could also be unsta-

ble but in general has a smaller growth rate than m¼ 0, 1 so

we focus on the more dangerous growth rate. Figure 4 shows

the evolution of B01, B02, B03, Bh, g, R, a, q02, and q03, for a

liner geometry and current profile similar to the fully inte-

grated MagLIF experiments of Gomez et al. (with pre-

magnetization of a 10 T axial magnetic field, and a preheated

fuel14). These results are expected to be equally applicable to

the experiments of Awe et al.,12,13 except for the decelera-

tion phase since the experiments by Gomez et al. included a

laser pre-heat. This allows stagnation at smaller convergence

ratio, a key feature of MagLIF. Figure 4 was extracted from

the HYDRA 1D simulations using the procedure outlined

elsewhere.18 Note from Fig. 4 that during the entire interval

of 148 ns, q01¼ 0, q03 � q02 and that g< 0 only within the

last 7 ns. The instantaneous instability growth rates for the

m¼ 0 and the m¼ 1 mode are compared in Fig. 5(a) as a

function of time, for various axial wavelengths k¼ 2p/k. We

interpret Fig. 5(a) as follows, focusing on the k¼ 1 mm case.

For k¼ 1 mm, Fig. 5(a) shows that there are five (5) dif-

ferent stages of MRT-sausage-kink growth for the evolving

B01, B02, B03, Bh, g, R, a, q02, and q03 shown in Fig. 4. (i)

Initially, for the first 20 ns, the azimuthal magnetic field is

small compared with the pre-seeded axial magnetic field of

10 T, both the m¼ 0 and m¼ 1 modes are stable. (ii) As the

azimuthal magnetic field increases, but is still less than the

axial magnetic field, the kink mode (m¼ 1) becomes unsta-

ble but the sausage mode (m¼ 0) remains stable. This stage

is very similar to a tokamak with a safety factor q< 1, but

will quickly pass. (iii) As the azimuthal magnetic field is

increased further, from about 25 to 55 ns, both the kink and

FIG. 3. The normalized growth rate calculated from Eq. (3) for (a), the

m¼ 0 mode, and (b), the m¼ 1 mode, with B01¼B02¼ 0, and B03/Bh¼ 1,

for R/D¼ 1.0101 (almost solid cylinder), 2, and 10. Here, g¼ 0 corresponds

to the pure sausage mode (m¼ 0), or the pure kink mode (m¼ 1), and

g¼�jgmaxj< 0 corresponds to the pure MRT mode for an exploding liner

near its stagnation.

FIG. 4. (a) Evolution of magnetic fields and average liner acceleration,

a¼�g, from 1D HYDRA simulations. (b) Liner trajectory and evolution of

the fuel and liner density from 1D HYDRA simulations. At t¼ 0:

B01¼B02¼B03¼ 10 T, Bh¼ 0 T.
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sausage mode become unstable, but the kink mode is domi-

nant. This is not the case if there is no axial magnetic field.

Thus, the axial magnetic field gives a preference to the

growth of the kink mode if helical perturbations are present.

One might wonder if the subdominance of the m¼ 0 mode in

these early stages has anything to do with the appearance of

the helical structures in Awe’s experiments.12,13 Early on,

MRT is not important because there is little inward accelera-

tion of the liner (g is small). Over the first 60 ns, the maxi-

mum number of e-folds is on the order of 1 for axial

wavelengths around 100 lm, while wavelengths on the order

of 1 mm have undergone around 0.1 e-folds. Because we use

a sharp boundary model, the number of e-folds also depends

on the density used. Certainly, there will be some ablation

and it is difficult to tell whether the early time growth occurs

in the ablated plasma or the bulk, above we have used the

near-solid density which may underestimate growth. It is

also possible these modes collude with electrothermal insta-

bility which tends to occur for short wavelengths (<200 lm)

at these early times.21,22 (iv) As the azimuthal magnetic field

further increases much beyond the axial magnetic field (from

the current rise after 55 ns), both the m¼ 0 and m¼ 1 mode

are unstable, but the m¼ 0 mode becomes dominant. At this

point g is large, such that MRT is the dominant driver of

instability decreasing the e-folding time substantially. This

situation remains for the major part of the implosion, all the

way until the fuel region is heated up to such a high pressure

that the sign of radial acceleration reverses, and the stagna-

tion stage begins. (v) During the deceleration stage (stagna-

tion) in the last 7 ns of the simulation, both the m¼ 0 and

m¼ 1 modes are unstable, but the m¼ 1, kink-like mode has

a higher total amplitude gain than the m¼ 0 mode during

this final stage. Figure 5(b) shows that the kink mode’s am-

plitude gain is about three times that of the sausage mode

during this final stage if k¼ 1 mm. Thus, if helical structure

has fed-through the liner and seeded the inner surface, this

could generate substantial helical growth within the fuel/

liner inner surface during the deceleration phase. In fact,

from Fig. 3(b), the pure deceleration-MRT m¼ 1 mode exhib-

its a growth rate with complete lack of dependence on wave-

length except for an upper wavenumber cutoff kmax (short

wavelength). This would suggest that the dominant kink-like

perturbation near stagnation will correspond to the most

strongly-seeded kink-like liner deformation during run-in.

Finally, we note that the instability growth rates pre-

sented above are also in excellent agreement with the bench-

mark MRT data in Sinars et al.9,10 Experiments showing the

growth of seeded m¼ 0, kz¼ 400 lm modes were presented

which also compared very favorably with planar growth

rates10,18 since kR was large. The m¼ 0 modes are fairly

straightforward to verify via 2D simulations and also in

experiments, however 3D perturbations are much more

difficult to investigate. As such, growth rates with m 6¼ 0 and

k 6¼ 0 could hopefully be used to benchmark 3D simulation

codes, of which there are very few tests.

IV. CONCLUDING REMARKS

This paper concentrates on the cylindrical effects of the

stability of a current-carrying liner of various aspect ratios,

from a thin liner to a solid cylinder. We focused mainly on

the m¼ 0 and m¼ 1 modes and on the effect of radial accel-

eration on the liner stability. When the radial acceleration is

negligible, as is the case during the initial axial current rise,

the sausage mode is dominant without an axial magnetic

field, but the kink mode is dominant with a pre-seeded axial

magnetic field. During the main part of the implosion, the

m¼ 0 mode grows faster than the m¼ 1 mode. At the stagna-

tion stage where the radial acceleration changes sign, the

m¼ 1 MRT-kink mode grows faster than the m¼ 0 MRT-

sausage mode for shorter wavelengths (�1 mm) when there

is a pre-seeded axial magnetic field.

The intricate interplay between the m¼ 0 and m¼ 1

modes, which also depends on the magnitude and sign of g,

makes the interpretation of the helical structure observed by

Awe et al.12,13 and the apparent kink-like activities in

Gomez et al.14 difficult. Most questions on them remain

unanswered. Among them include the sharpness of helical

structures, the underlying reasons for the observed mode

numbers (m, k), the role of initial seeding, the origin and

maintenance of the helical structures, and their relation (if

FIG. 5. (a) Relative dominance of sausage and kink modes for a MagLIF

like implosion. g> 0 up until final 7 ns where it changes sign. Observed ex-

perimental axial wavelengths are on the order of 1 mm. (b) Magnification of

the last 7 ns, comparing the amplitude gain of the sausage and kink mode as

a function of wavelength. Stronger axial fields allow the kink mode to domi-

nate over shorter wavelengths.
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any) to the kink-like mode that seems to have shown up at

the final stage in the liner experiment of Gomez et al.14 Our

analysis does show that if helical perturbations are present

on the liner surface, the axial magnetic field opens a window

for the kink to grow instead of the sausage mode.

Despite the uncertainties, one puzzle on the experiment

of Awe et al.,12,13 namely, why the helical structures opened
up (instead of very tightly wound up as the azimuthal mag-

netic field increases; see Fig. 4(a)) may be explained in terms

of an eigenmode with a specific m and k. The axial wave-

number, k, is assumed to be constant. The frames in the

experiment of Awe et al.,12,13 occur over a narrow time win-

dow so this seems adequate. The pitch angle of the helix, /,

of the eigenmode is given by / ¼ tan�1ðm=kRÞ 	 m=kR,

relating the values of /(t2) and /(t1) at different times t2

and t1: /ðt2Þ ¼ /ðt1Þ � Rðt1Þ=Rðt2Þ. For the Z-Machine

Shot 2480, the measured (mean) values are /ðt1Þ ¼ 16:48,
aðt1Þ ¼ 870 lm, aðt2Þ ¼ 365 lm. We then have, Rðt1Þ ¼
aðt1Þ þD ¼ 870 lmþ 465 lm ¼ 1335 lm, and Rðt2Þ ¼
365 lm þ465 lm ¼ 830 lm, where we have assumed that

the liner thickness D ¼ 465 lm remains unchanged through-

out (see Fig. 4(b) and Awe et al.12,13). The predicted helix

pitch angle at t2 is then /ðt2Þ ¼ 16:48� 1335=830 ¼ 26:48,
which is quite close to the observed mean value of

/ðt2Þ ¼ 25:68. Using this technique, the predicted value for

/ðt2Þ in Shot 2481 is within the experimental uncertainties

of the measured value also. This interpretation of the persist-

ence of helical structures was motivated by the density wave

theory that also used eigenmodes to explain the persistence

of spiral structures in disk galaxies despite strong differential

rotation.23 Reproduction of the experimentally observed heli-

cal structures from simulations, without artificial seeding,

has proved very challenging. 3D MHD simulations have

required initial seeding of a helix to reproduce the observed

helical structure; it has not simply arisen out of white

noise.13 Unfortunately, this seeding has also produced helical

structure when no axial magnetic field is present which is not

in line with experimental results. The sharpness of the heli-

ces and very specific mode numbers (in m and k) that were

observed present the biggest challenge in comparing

(unseeded) 3D simulations and experiments.
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