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enhancements due to surface roughness
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The radio-frequency (rf) power absorption due to a small hemispherical protrusion on a resonant
cavity’s surface is computed analytically. This protrusion may assume arbitrary values of
permittivity, permeability, and conductivity so that it may represent a foreign object. Under the
assumption that the protrusion radius, a, is small compared with the rf wavelength, the power
dissipated in the protrusion by the rf electric field and by the rf magnetic field are calculated
explicitly. It is found that, in general, the heating by the rf magnetic field is dominant when 6/a
<1, even for nonmagnetic materials, where & is the skin depth associated with the protrusion
material. The field enhancement factors for both the rf electric field and the rf magnetic field on the
protrusion are also calculated analytically. They are found to decrease as &/a increases. They are
spot checked against the MAXWELL 3D code. These field enhancement factors are also consistent
with the published results in the =0 limit, in which case the protrusion may represent a small local
bump on the surface of a superconducting cavity. © 2009 American Institute of Physics.

[DOL: 10.1063/1.3131844]

I. INTRODUCTION

Surface roughness may exert a profound effect in the
performance of radio-frequency (rf) cavities or slow wave
structures, 1-10 for example, in communication
systems,z’ﬁ’“’12 particle acc:elerators,3’4’10’11’13’14 material
characterization at microwave fre:que:ncies,ls’16 etc. Surface
roughness may cause enhanced power absorption in these
devices. * 10119 1 may lead to excessive local electric field
enhancement that triggers rf breakdown.**!1%1220-23 1y 4 gy
perconducting cavity, surface roughness may also cause local
magnetic field enhancement that leads to abrupt
quenching,l’3’]l i.e., rapid loss of superconductivity.

Surface roughness may assume many forms. Small for-
eign objects might be attached to the cavity surface, and
these impurities might have very different electrical proper-
ties from those of the presumably pristine metallic surface.
Their presence is known to cause localized damage.&“’18
The metallic surface itself might not be perfectly smooth, in
which case the roughness consists of the same material as the
surface, i.e., no foreign materials are involved. Grain bound-
aries also make the surface microscopically rough.]9’24’25 Re-
gardless of the origin of the roughness, of general interest is
the additional rf power that would be absorbed due to the
surface roughness, and the local enhancement in the rf elec-
tric field and in the rf magnetic field due to the change of the
local geometry.

In this paper, we provide an accurate assessment of the
additional heating, as well as the local rf electric field and rf
magnetic field enhancements due to a small, local surface
roughness. The crucial assumption is that this small rough-
ness is hemispherical in shape, whose radius, a, is much less
than N(a/N<<1), where \ is the rf wavelength exterior to the
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protrusion. To isolate the effects of this roughness, we as-
sume that it is setting on a perfectly conducting surface so
that in the absence of this roughness, the rf electric field
there, E, is orthogonal to the surface; whereas the rf mag-
netic field there, Hy, is tangential to the surface (Fig. 1). The
relative magnitudes and the relative phases between E, and
H, may be arbitrary so that this local roughness may be
located anywhere on the surface of a conducting cavity or of
a conducting waveguide. Another crucial assumption is that
the hemispherical protrusion has a constant (complex) per-
mittivity, ,=¢,,—jo/ w, where o is the electrical conductiv-
ity at the rf frequency w, and a constant (real) permeability
M. While €,, o, and u, are real constants, all assumed to be
known, their values may be arbitrary. Thus, this roughness
may represent a foreign object or it may be made of the same
material as the conducting surface. The ratio 6/a may take
on an arbitrary value ranging from zero to infinity, where &
=(2/wpyo)"? is the skin depth associated with protrusion

s

FIG. 1. (Color online) A small hemispherical bump on a conducting surface
whose local rf electric field is E, and local rf magnetic field is H, in the
absence of the bump.
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FIG. 2. (Color online) Decomposition of the local electromagnetic field
(Eq,Hy) into (a) the TE mode (E,,0), and (b) the TM mode (0,H,).

material, with §— % corresponding to an insulating protru-
sion and =0 corresponding to a perfectly conducting pro-
trusion.

In Sec. II, we transform the irregular geometry of a
“hemispherical protrusion on a surface” (Fig. 1) into an
equivalent, but highly symmetrical problem of a “spherical
particulate in a spherical cavity” (Fig. 3 below) under the
assumption that the radius a of the protrusion is much
smaller than the wavelength (and also much smaller than the
local radius of curvature of the surface if the cavity wall is
not a flat surface). The perturbation by the small spherical
particulate on the eigenfrequency of the spherical cavity then
gives the rf power absorbed by the protrusion, as treated in
Sec. III. The enhancement factors of the rf fields, as a result
of the protrusion, are presented in Sec. IV. They are obtained
from the perturbation on the eigenfunctions of the spherical
cavity by the spherical particulate. Both rf electric field and
rf magnetic field enhancement factors reduce to the estab-
lished results in the appropriate limits. Section IV also pre-
sents spot checks of the field enhancement factors against the
MAXWELL 3D code® results, adding plausibility of our ap-
proach. Concluding remarks are given in Sec. V.

Since the perturbations on the eigenmodes on the spheri-
cal cavity, by a small spherical particulate, were treated in
some detail by Bosman et al.*" and by Tang et al.,”® we shall
only quote their results when needed. Furthermore, Refs. 27
and 28 focused mainly on the rf heating of an isolated, freely
suspended particulate. This paper extends their results to in-
clude the field enhancement factors in the rf electric field and
rf magnetic field, and the resultant rf heating, for the impor-
tant case where a small hemispherical particulate is attached
to a perfect conductor.

Il. THE MODEL

Despite the irregular geometry shown in Fig. 1 and the
possibly strong coupling between the rf magnetic field and
the rf electric field through the hemispherical protrusion, the
problems of rf heating and of rf field enhancement at the
protrusion can actually be solved analytically in the
asymptotic limit a/\ <1, without any restriction on the skin
depth, . Our argument is as follows. In the immediate neigh-
borhood of the protrusion (Fig. 1), the rf electromagnetic
field, represented as (Eq,H,) when the protrusion is absent,
may be considered as a linear combination of two modes:
(Ey,0) and (0,H,), each oscillating at the same frequency w
(Fig. 2). Because of the respective domination of the rf elec-
tric field and the rf magnetic field, we designate the (E,0)
mode as the TE mode and the (0,H,) as the TM mode. This
mode designation, together with the corresponding ones in
Fig. 3, follows Ref. 28. As we shall see, it also applies to
incident transverse electromagnetic (TEM) plane wave in an
open system with protrusions.
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FIG. 3. (Color online) Transformation of the “protrusion on surface” prob-
lem into a spherical eigenmode problem for (a) the TE;;, mode and (b) the
TM,,, mode. The mode index (110) refers to variations in r, 6, and ¢. Note
that by symmetry, the mode patterns in (a) or (b) are unchanged with or
without a perfect conductor inserted in the horizontal midplane.

For the action of (E;,0) on a small hemispherical pro-
trusion [Fig. 2(a)], we now consider an auxiliary problem
[Fig. 3(a)]. Figure 3(a) shows a perfectly conducting spheri-
cal cavity of radius b, whose natural frequency for the fun-
damental TE mode is @ when this cavity is empty (i.e., by
setting b=2.7437¢/ w), and whose vacuum eigenmode at the
center of cavity is (E,,0). We now insert a spherical particu-
late of radius a and of the same permittivity &,=¢,;—jo/ w,
and the same permeability w; at the center of this spherical
cavity [Fig. 3(a)]. The high degree of spherical symmetry
allows us to analytically calculate the perturbation on the
eigenmode and the perturbation on the eigenfrequency by
this spherical particulate.27’28 The perturbation on the TE
eigenmode gives the rf electric field enhancement factor, and
the damping rate of the TE eigenmode gives the rf power
dissipated in the lossy particulate.27’28 These are also pre-
cisely the rf electric field enhancement for the small hemi-
spherical protrusion on the flat plate [Fig. 2(a)] and the rf
electric field energy that the (lossy) protrusion dissipated.
This follows from symmetry of the fields: the rf electric field
and the (vanishingly small) rf magnetic field in the spherical
cavity, including the spherical particulate, are unchanged if
we insert a horizontal, perfectly conducting plate that cuts
the spherical cavity and spherical particulate in half [Fig.
3(a)]. In the immediate vicinity of the protrusion, the geom-
etry, and rf field configuration also, between Figs. 2(a) and
3(a) are then equivalent in the asymptotic limit a/\N<<1.
Since the perturbed TE eigenmode has been solved using the
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full set of the Maxwell equations for Fig. 3(a), with the in-
clusion of the particulate, the calculation of the rf electro-
magnetic field for the TE mode 1is intrinsically
self-consistent.””*®

Similarly, for the action of (0,H,) on the hemispherical
protrusion [Fig. 2(b)], we also consider the auxiliary problem
[Fig. 3(b)], that of a perfectly conducting spherical cavity,
whose natural frequency for the fundamental TM mode is
also w when the cavity is empty (i.e., by setting the cavity
radius b=4.4934¢/ w), and whose vacuum eigenmode at the
center of cavity is (0,H,). We insert the same spherical par-
ticulate, of radius a and of the same permittivity &,=¢,;
—jo/w, and the same permeability w; at the center of this
spherical cavity [Fig. 3(b)]. The perturbation on the TM
eigenmode gives the rf magnetic field enhancement factor,
and the damping rate of the TM eigenmode gives the rf
power dissipated in the lossy pz:1rticu1ate.27’28 These are also
precisely the rf magnetic field enhancement for the small
hemispherical protrusion on the flat plate and the rf magnetic
field energy that the (lossy) protrusion dissipated. This fol-
lows from symmetry of the fields: the rf magnetic field and
the (vanishingly small) rf electric field in the spherical cavity,
including the spherical particulate, are unchanged if we in-
sert a horizontal, perfectly conducting plate that cuts the
spherical cavity and spherical particulate in half [Fig. 3(b)].
In the immediate vicinity of the protrusion, the geometry,
and rf field configuration also, between Figs. 2(b) and 3(b)
are then equivalent in the asymptotic limit a/\ < 1. Since the
perturbed TM eigenmode has been solved using the full set
of the Maxwell equations, with the inclusion of the particu-
late, the calculation of the rf electromagnetic field for the TM
mode is intrinsically self-consistent.

lll. RF POWER ABSORPTION

The perturbation due to a small particulate located at the
center of a perfectly conducting spherical cavity is studied by
Bosman et al.”’ and Tang et al.”® The particulate has radius a
and the cavity has radius b. Hereafter, we follow Tang et al®®
to use subscripts 1 and 2 to denote the values in region I
(r<a) and region Il (a<r<b) (Fig. 3). In these two re-
gions, the permittivity is €,=¢,;—jo/ w, and &,, respectively,
and the permeability is w; and u, respectively, where ¢,{, 0,
&y, u1, and u, are all real and they may assume arbitrary
values. Even though in this paper we will set e,=¢, and
Mo = Mg, the formulas will be written for general values of &,
and u, to conform with the notation of Ref. 28. In the ab-
sence of this particulate, the cavity admits the fundamental
TE ;o mode, which has a maximum rf electric field and a null
rf magnetic field, at the center [Fig. 3(a)], as well as the
TM; ¢ mode, which has a maximum rf magnetic field, and a
null rf electric field, at the center [Fig. 3(b)]. In the empty
cavity, both the TE mode and TM mode have an infinite
quality factor Q since the cavity wall is lossless. The eigen-
frequencies wg and wy, (both equal to w) for the TE;, and
TM, o modes are given by 7;=2.743 71 and 7,,=4.4934,
respectively, with 7, 4= g yb(es0)>=27b/ N> When a
small, lossy particulate is introduced at the center of the cav-
ity, the modes would be slightly damped, the eigenmode fre-
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quency becomes complex, and the quality factor Q becomes
finite. The change of Q in the TE (TM) mode gives the
power dissipation due to this lossy particulate by the rf elec-
tric (magnetic) field. The change in the eigenfrequencies, dw,
due to the particulate reads

S Sy Y'(yp) [J@ZE) ]
Y(&p)
% [ZlA(glE) -A(é&p)

Z,A(&p) —B(sz)] (TE mode), @

So_on __y(m) {J'@ZM)]
Wy - i O LY (&)

|:ZI/A(§1M) - 1/A(&y)

Z,/A(& 1) = 1/B(&m)

for the TE and TM modes, respectively [cf. Egs. (15) and
(28) of Ref. 28], where

} (TM mode), (2)

_sing cosé
](§)=S1§2 —°°§ , (3)
£ siné

y<f>=—“’;2 —%, (4)

HO=£(0, Y(© =80, (5)
AG Y(©®

AQ=" 0 BO= (6)
1/

7,= 2 (7)
Ve /e,

and the prime denotes the derivative with respect to the ar-
gument. In the arguments, &= 7ng(a/b) and &)= n(a/b)
are both real, & z=wg(e\u)%a, &y=wy(e un)?a, in
which w; (permeability of region I) is real, &,=¢,—jo/®
(permittivity of region I) is complex. Once more, Egs. (1)
and (2) are valid as long as a/\<<1, regardless of the values
of €,1, 0, &, u;, and u,.

The real parts of Egs. (1) and (2) give the detune of the
eigenmode frequency and the imaginary parts give the damp-
ing rate gy, which is related to the average power loss P
and the quality factor Q through the relationship (Ref. 29),

P=2vyU=wU/Q, (8)

where U is the average electromagnetic energy stored in the
eigenmode of the empty cavity. The power dissipations for
the TE and TM modes for Fig. 2, denoted by Pr and Py,
respectively, then read

1
Pp= a’EwE<582E(2)) v, (9a)
N 3
ap=0.041 31(—) Ye, (9b)
a wgp
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1 2
Py = azoy 5#21‘10 Vas (10a)
A 3
ay=0.077 67(—) Y (10b)
a Wy

where Ey(H,) is the peak value of the rf electric (magnetic)
field of the TE (TM) mode at the center of the cavity in the
absence of the spherical particulate (Fig. 3), whose half vol-
ume is V,=(27/3)a’, and ag(ay) is known as the particulate
polarizability>®>* for the TE (TM) mode [cf. Eqs. (20) and
(32) of Ref. 28].

The asymptotic formulas for ag in Eq. (9b) and ay in
Eq. (10b) may be expressed in terms of the skin depth &
=(2/ wuy0)"? [cf. Eqgs. (36) and (37) of Ref. 28],

5 5
aEz%l(“—z)\/ﬂ, B2 <1, (11a)
A M2 My a
ap = 187°(8IN)?,
1) 1 N
1<\/&—<—ﬂ/2\/&<—>, (11b)
pia N2 Ve, ¥ u\a
~(>\/5)2< 3 )2
aE_ 27T2 2+81r/82
1 [y (N [y &
| <—=/2 &<—>< 22 (11c)
w2 Ve, Vu\a Ma
965 5
N - L= S (12a)
da N My a

2 2 2
Sy N B (E
S5\6/ \pp) \2+ pylpy M a

Tang et al.®® shows that the asymptotic formulas, Eqgs.
(1T1a)=(11c), (12a), and (12b), give an excellent qualitative
representation of the exact forms, Egs. (9b) and (10b). Figure
4(a) shows the asymptotes of ay as a function of &/a for
different values of N\/a, for the special case w;=pu,=pu, and
e,,=&,=¢g(. From the interception of the asymptotic expan-
sions (11b) and (11c), one estimates that the maximum value
of ay is of order 3, occurring at a value of 6/a=0.13(\/a),
as shown in Fig. 4(a). Figure 4(b) shows the asymptotes of
ay as a function of 6/a for the same special case u;=u,
=pug, and &,,=e,=g,. Note from Egs. (12a) and (12b) that
these asymptotes are independent of N/a for N/a>1. The
maximum value of ay is about 1.0, occurring at a value of
6/a=0.446 approximately, as shown in Fig. 4(b). Taking the
ratio of Eq. (11a) and (12a), one obtains ay/ap=(\/2ma)?
>1 for a good conducting particulate (6/a<<1), as is also
evident in Fig. 4. Thus, heating by the rf magnetic field
dominates over the heating by the rf electric field when
8/a< 137723 We should emphasize that, physically, “heat-
ing by the rf magnetic field” is actually the same as Ohmic
heating due to the rf electric field that is induced within the
particulate/protrusion by the external rf magnetic field com-
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FIG. 4. (Color online) The asymptotes for (a) e and (b) ay as a function of
6/a for w,/m,=1, €,,/e,=1 and various values of A/a. These asymptotes
yield approximate maximum values of az=3 and ay=1.0. Note that the
scaling law for ay is independent of N/a for N/a>1.

ponent, and this is the physical basis of derivation of the
magnetic polarizability for nonmagnetic materials by Landau
and Lifshitz.*? Using Egs. (11) and (12), Egs. (9) and (10)
yield

.
S 5
0o wly,  S<l,
A a
S5\2 5 X\
Pp=1 18772<—> oUgV,, 1<-<-—, (13)
A a a
L (Mg, 1a2a
\2772 5) CUEe a a

9(6 o
-\ = |oUyV,, —<I1,
4\a a

Py, =
M 1{a)\? o (14)
- =] oUyV,, —>1,
a

5\d

where Up=(1/2)goEq and Uy=(1/2)uoH: for the special
case U =M= and &;,=&,=¢.

To quantify the additional heating due to surface rough-
ness relative to the intrinsic Ohmic loss in the flat surface, let
us now assume that the flat surface is slightly lossy, charac-
terized by its skin depth J;. To get an idea on the order of
magnitude, let us consider a planar, TEM wave that propa-
gates on the flat surface whose electric and magnetic field
amplitude satisfies Ey=(uy/&o)""*H, (Fig. 2). Over an area of
1 m? on this surface, the Ohmic power loss on this flat sur-
face is readily shown to be Py,=m(5,/N\)S, where S
=(1/2)EyHy=(1/2)E}(go/ puo)"'? is the Poynting flux [cf. Eq.
(5) on p. 157 of Ramo er al., Ref. 29]. Over this unit surface
area, let there be N hemispherical protrusions of radius a so
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that the fraction of the surface area that is bumpy is fiump
=Nma®. These protrusions may be considered independent if
their average separation is much larger than a** 1f each pro-
trusion consumes an additional rf power (Py+P,,), where P
and P, are given by Egs. (9a) and (10a), then we obtain

Pprotusions — N(PE + PM)

Puy  w(S/NEX2)eo/ o

(15)

which is the ratio of the additional rf power dissipated by the
surface roughness to the intrinsic Ohmic loss on the pristine
flat surface. The three following cases are next examined to
illustrate its order of magnitude.

(A) If the hemispherical protrusions are made of the same
conducting materials as the flat surface, we set 6=, in Eq.
(14) and ignore Py in comparison with P,, (assuming §<a)
to obtain

R=3fbumpv (16)

where fiymp is the fraction of the surface area covered by
roughness. Thus, for a nominally flat superconducting sur-
face, where fi,,n, is expected to be very small, the additional
Ohmic heating on the rough surface as measured by R (in the
absence of foreign contaminants) is unlikely to be the reason
for any loss of superconductivity. On the other hand, on an
ordinary conductor, if its surface exhibits excessive rf power
loss, the likely culprit would be foreign objects or grain
boundaries that introduce significant additional surface resis-
tance.

(B) If the protrusions are made of foreign objects, the maxi-
mum amount of their Ohmic loss through the rf electric field
may be estimated by inserting the approximate maximum
value of az=3 into Eq. (9a); see Fig. 4(a). Equation (15)
then gives, upon ignoring the P, term,

da

R= Rmax(TE) = ( 5. )fbump' (17)

(C) Likewise, if the protrusions are made of foreign objects,
the maximum amount of their Ohmic loss through the rf
magnetic field may be estimated by inserting the approxi-
mate maximum value of ay=1.0 into Eq. (10a); see Fig.
4(b). Equation (15) then gives, upon ignoring the P term,

1.33a
5‘? fbump' (18)

R =Ry (TM) = (

Equation (15) may provide a useful estimate on the ad-
ditional loss due to surface features that are difficult to simu-
late directly in a numerical code. If Ohmic loss is a serious
issue, as expected in a submillimeter traveling wave tube
because of its low gain,2 additional loss due to surface rough-
ness poses a very serious threat. Equation (15), together with
experimental measurements of the geometric surface fea-
tures, may provide a characterization of such additional loss,
and the latter may then be included in a more realistic de-
sign.
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IV. RF FIELD ENHANCEMENTS

The modifications of the eigenfunctions by the spherical
particulate in Figs. 3(a) and 3(b) give the enhancements in
the 1f electric field and in the rf magnetic field for the hemi-
spherical protrusions in Figs. 2(a) and 2(b), respectively. We
treat these two cases separately below. They were not exam-
ined in Refs. 27 and 28.

A. rf electric field enhancement

The local 1f electric field at the location of the protrusion
in Fig. 3(a) may be obtained from the r-component and
6-component of electric field in region II for the TE mode.
They read [cf. Eq. (9) of Ref. 28]

2
B, = 22 Oy (k) - 7 (a1, (19)
Jjwe,r
Ey= Ij Slsn LY () ko) = I ()Y )], (20)
w 2r

where B is an arbitrary constant, j(£), y(&), J(£), and Y(¢) are
defined in Egs. (3)—(5), ky=w(e,u,)"?, m=k,b, and the
prime denotes the derivative with respect to the argument.
For these fields to give a constant rf electric field E,, at the
center of the cavity in the absence of the particulate, we find
the constant B to be related to E; by

2
Eo=B(—ng'(nE)> \/’8‘:22 (21)

where np=2mwb/\N=2.743 71.

The introduction of a small protrusion modifies the ei-
genvalue by a small amount, w=wg+dw, n=ng+0on, and
&=&p+ 66, where &p=2ma/N=ng(a/b). It can be easily
shown that dw/wp=98n/ ng=056& /&y, given by Eq. (1). By
evaluating Egs. (19) and (20) at point A, the apex, and at
point C, the base, respectively [Fig. 3(a)], and expanding
about the unperturbed values 7g, wg, and &g, we obtain the
amplitude of the electric field at point A and C in the limit
a/lN<1,

Ey = BeaEos (22a)
ow
Bea = ‘ 1+—F,|, (22b)
Wg
Y () Jj' (&p) J"(7e)y (&)
F,=-1 - >
A e Y'(ng) o J(éE) e Y'(71)j(&E)
(22¢)
Ec= BecEy. (232)
ow
Bec=|1+—Fc|, (23b)
g
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Electric Field enhancement Factor

oo

8/a

FIG. 5. The electric field enhancement factor on the hemispherical protru-
sion at the apex (Bgy, solid curve) and at the base (Bg¢, dotted curve) as a
function of d/a, setting u,/u,=1, ,,/e,=1, and N/a=100.

J"(sz)_ J" ()Y’ (&p)
J' (&p) nEY’(’?E)J'(ng)’

Y"( 7]E)
TEY (1)

FC=—1+ +§2E (23C)

where Bg, and Bgc are the electric field enhancement factor
at point A and C due to the presence of the hemispherical
protrusion at the flat surface, respectively, and dw/wy is
given by Eq. (1).

Figure 5 shows Bg, and B¢ as a function of d/a, setting
M/ mo=1, &;,/e,=1, and N/a=100. As the skin depth be-
comes much smaller than the radius of the bump, 6/a~0,
the bump is nearly perfect conducting, the field enhancement
factor at apex is around 3, which agrees well with previous
studies.*** At the base point C, the electric field is forced to
become normal to both the hemispherical surface and the flat
surface, which are perpendicular to each other [Fig. 3(a)],
thus the electric field vanishes and the electric field enhance-
ment factor approaches zero. On the other hand, as the skin
depth assumes a very large value, the bump is almost dielec-
tric, with the same permeability and permittivity as vacuum,
mi/ puo=1, e/e,=¢€;,/e,=1, the rf electric field is not per-
turbed and the field enhancement factor at both points A and
C converges to the value of 1, as expected, and shown also in
Fig. 5.

A three-dimensional finite element code MAXWELL 3D
(Ref. 26) was used to verify the field enhancement factor
calculated analytically as well as the field distribution. The
hemispherical protrusion was situated on a flat, perfectly
conducting surface, as shown in Fig. 6. The electric field is
strongest at the apex and weakest at the base. In Fig. 6(a), by
reading the color bar, the electric field at the apex is roughly
three times of the background value, which is confirmed in
Fig. 6(b), where the magnitude of electric field, (E*+E2)'"?,
is plotted along a horizontal line at a distance of one protru-
sion radius above the flat surface, showing a field enhance-
ment factor of 3 clearly. As shown in Fig. 6(b), the analytical
calculation from Egs. (19) and (20) gives identical results as
the simulation. Note that the field enhancement profile is
independent of the radius of the protrusion.
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FIG. 6. (Color online) MAXWELL 3D results of (a) electric field distribution
around the hemispherical bump, (b) magnitude of electric field along a hori-
zontal line 0.5 cm (bump radius) above the flat surface (dashed line), which
agrees extremely well with the analytical calculation (solid line). E, is the
electric field far away from the bump.

B. rf magnetic field enhancement

The local magnetic field at the location of the bump on a
flat surface can be similarly calculated using the model of
Fig. 3(b). The #-component and r-component of the rf mag-
netic field in region II of Fig. 3(b) are [cf. Eq. (25) of Ref.
28],

D sin 6

Hy=—LLy(n)J" (k) = J() Y ()], (24)
Jopr

H, = 220 O (o ithar) = Hmy )], (25)
jou,r

respectively, where D is an arbitrary constant, j(&), y(§),
J(£), and Y(&) are defined in Egs. (3)—(5), kr=w(g,u0)"?,
n=k,b, and the prime denotes the derivative with respect to
the argument. For these fields to give a constant rf magnetic
field H,, at the center of the cavity in the absence of the
particulate, the constant D is related to H, by

HO:D<_j§y(7]M)) \/;:z (26)

where 7,=2mh/\=4.4934.
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FIG. 7. The magnetic field enhancement factor on the hemispherical protru-
sion at the apex point A (8,4, solid curve) and at the base point C (Byc,
dotted curve) as a function of &/a, setting u;/u,=1, €,,/e,=1, and N/a
=100.

The introduction of a small protrusion modifies the ei-
genvalue 7,, by a small amount. Analogous to Egs. (22) and
(23), we obtain the amplitude of the rf magnetic field at
points A and C of Fig. 3(b) in the limit a/\ <1,

Hy = BuaHy, (27a)
Buya= ‘ 1+ f)_iGA ) (27b)
_ ¥ () J"(&m)
Gam e ) T g,
j,(ﬂM)Y,(§2M)

T (' (&) ' (27¢)
He=BycHy, (28a)
Buc= ‘ 1+ i_zGc ) (28b)

¥ (1) J'(&m) 7' () y(éanr)
Gr=-1 - ,
¢ * y(7ar) * b J(ém) T ()i (éanr)

(28¢)

where B4 and By, are the magnetic field enhancement fac-
tor at point A and C due to the presence of the hemispherical
protrusion at the flat surface, respectively, & =2ma/\
=nylal/b) and dw/ wy, is given by Eq. (2).

Figure 7 shows B,,4 and By as a function of &/a, set-
ting w/m,=1, €;,/e,=1 and N/a=100. As the skin depth
becomes much smaller than the radius of the bump, d/a
~0, the bump is nearly perfectly conducting, the magnetic
field enhancement factor at apex is 1.5, which confirms the
result obtained by Shemelin and Padamsee,1 who simulated
the magnetic field enhancement at bumps on the surface of a
pill-box cavity using the code SLANS2. Note that this mag-
netic field enhancement factor at the apex of a hemispherical

J. Appl. Phys. 105, 114908 (2009)

bump on a flat surface is the same as that of an isolated
perfectly conducting sphere inserted in a uniform magnetic
field.*® Note from Fig. 7 that the maximum magnetic field
enhancement factor is given by materials with zero skin
depth, i.e., a superconductor, in which case the local high
magnetic field could exceed the critical magnetic field for
superconductivity, even though the rf magnetic field is below
this critical value for a pristine, flat surface. Thus surface
roughness could lead to abrupt loss of superconductivity.l’11
Note further that this magnetic field enhancement factor is
independent of the size of the hemispherical protrusion.
Thus, it is extremely important to create ultrasmooth, pol-
ished surfaces to retain superconductivity in the presence of
large rf magnetic fields, and this is consistent with the cur-
rent challenge in superconducting cavity fabrication. At the
base point C, the magnetic field normal to the bump surface
vanishes and the field enhancement factor becomes 0. When
the skin depth becomes comparable to the bump radius, the
magnetic field enhancement factor at both point A and C
becomes nearly unity (Fig. 7).

The MAXWELL 3D code®® was used again to verify the
magnetic field enhancement factor calculated analytically as
well as the field distribution due to the hemispherical protru-
sion situated on a perfectly conducting surface, as shown in
Fig. 8. The magnetic field is strongest along the great circle
whose plane is perpendicular to the applied magnetic field,
according to color bar in Fig. 8(a). The magnetic field at the
apex is roughly 1.5 times of the background value. The mag-
nitude of the magnetic field, (H>+H%)'?, is plotted along two
horizontal lines at a distance of one bump radius above the
flat surface, one line (line 1) in the plane parallel to and the
other line (line 2) perpendicular to the applied magnetic
field, as shown in Figs. 8(b) and 8(c), respectively. Both plots
clearly show a magnetic field enhancement of 1.5. The simu-
lation results agreed extremely well with our analytically cal-
culated results from Eq. (24) and (25), as shown by the solid
lines in Figs. 8(b) and 8(c). The field enhancement profile is
independent of the size of the protrusion.

V. CONCLUDING REMARKS

This paper gives a self-consistent, accurate evaluation of
the modification of the electromagnetic field due to a hemi-
spherical protrusion setting on a locally flat conducting sur-
face. Two major assumptions were made: (a) The size of the
protrusion is small compared with the wavelength of the ra-
diation, and with the local radius of curvature if the surface is
curved, and (b) the complex permittivity and permeability of
the protrusion are constant. The latter constants may assume
arbitrary values however. The local rf electric and rf mag-
netic fields, E, and Hj, in the absence of the protrusion, may
have arbitrary magnitudes and phases between them. The
Ohmic absorption by the protrusion is calculated, and com-
pared with the intrinsic Ohmic absorption of an otherwise
flat surface. Our study suggests that if excessive Ohmic loss
on a nominally flat metallic surface occurs, it is most likely
due to foreign objects or grain boundaries that greatly in-
crease the surface resistance.

The rf electric field enhancement and rf magnetic field
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FIG. 8. (Color online) MAXWELL 3D results. (a) Magnetic field distribution
around the hemispherical bump in the plane parallel and perpendicular to the
applied field. Plot of the magnitude of magnetic field (dashed lines) along
line 1 (b), and along line 2 (c), both are horizontal lines 1.0 cm (one bump
radius) above the flat surface. Also shown are the analytical calculations
(solid lines). H, is the magnetic field far away from the bump.

enhancement due to the hemispherical protrusion is also cal-
culated. These field enhancement factors do not depend on
the size of the protrusion, and they are modest (maximum
value of 3 for rf electric field enhancement and 1.5 for rf
magnetic field enhancement). While these are only modest
enhancements and are simply the classical, static value ex-
pected on a conducting protrusion, the magnetic field en-
hancement due to surface roughness has been a major con-
cern in the design of superconducting cavities. It is
interesting to note that in all of our calculations of the per-
turbed electromagnetic fields, we assume a small protrusion.

J. Appl. Phys. 105, 114908 (2009)

Yet the above-quoted finite values of field enhancement fac-
tors remain as long as the protrusion exists, regardless of its
size. That is, a regular perturbation technique yields a finite
but different result in the limit of the vanishingly small ex-
pansion parameter (a/N). The approach of decomposition
into separate TE and TM modes, and the perturbation tech-
niques in the smallness of the protrusion radius, apparently
are valid, as our results agree with numerical codes, and with
the known results in the appropriate limit in this purely clas-
sical (non-quantum-mechanical) analysis.

Since the amplitudes and the phases of E, and H,, of the
local electromagnetic field are arbitrary, this electromagnetic
field may be due to an incident wave at arbitrary incident
angle and arbitrary polarization. Since we have self-
consistently and accurately calculated the (nontrivial) modi-
fication of E; and H,, by a local hemispherical protrusion, we
have essentially paved the way to calculate the scattered ra-
diation of an arbitrary incident wave due to such a protru-
sion, subject only to the two relatively weak assumptions
stated in the first paragraph of this section.

Finally, what we have calculated here includes the com-
plete rf field solutions at a triple point, defined as the inter-
face between dielectric, metal, and vacuum.””*® The maxi-
mum field enhancement factors are given by that of a perfect
conductor, in the limit of a static field (electric or magnetic).
Thus, if we are only interested in the maximum field en-
hancement factors for a complex protrusion geometry, we
may simply use electrostatic and magnetostatic field solvers
for that geometry.1’20’21’34736 However, the rf heating in such
a protrusion is considerably more difficult to assess.
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