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This paper attempts to quantify the effects of contaminants on electrical contact resistance. Based on
an idealized model, simple and explicit scaling laws for the electrical contact resistance with
dissimilar materials are constructed. The model assumes arbitrary resistivity ratios and aspect ratios
in the current channels and their contact region, for both Cartesian and cylindrical geometries. The
scaling laws have been favorably tested in several limits, and in sample calculations using a
numerical simulation code. From the scaling laws and a survey of the huge parameter space, some
general conclusions are drawn on the parametric dependence of the contact resistance on the
geometry and on the electrical resistivity in different regions. © 2010 American Institute of Physics.
�doi:10.1063/1.3457899�

I. INTRODUCTION

Because of the surface roughness on a microscopic
scale, true contact between two pieces of conductors occurs
only at the asperities �small protrusions� of two contacting
surfaces. Current flows only through these asperities, which
occupy a small fraction of the area of the nominal contacting
surfaces. This gives rise to contact resistance,1–4 a very im-
portant issue to thin film devices5 and integrated circuits,6,7

carbon nanotube based cathodes8,9 and interconnects,8,10 field
emitters,9,11 metal-insulator-vacuum junctions,12 tribology,13

wire-array z-pinches,14 etc. On the largest scales, faulty elec-
trical contact has caused the recent failure of the Large Had-
ron Collider, and similarly threatens the International Ther-
monuclear Experimental Reactor.15 It is clear that contact
resistance is highly random, depending on the surface rough-
ness, on the applied pressure, on the hardness of the materi-
als, and perhaps most importantly, on the residing oxides and
contaminants at the contact.1,2,7,14

For decades, the fundamental model of electrical contact
has been that of Holm’s a-spot,1 which consists of two semi-
infinite cylinders of radius b placed together. Current can
flow through them only via a “bridge” in the form of a cir-
cular disk of radius a�b. While there are statistical
treatments3 and extensions of the a-spot theory to other disk
shapes,2 Holm’s zero-thickness assumption is almost always
used. Most recently, an attempt has been made to relax
Holm’s zero-thickness assumption to include a connecting
bridge of finite axial length �h� joining two metal blocks.4

While the theory in Ref. 4 was validated in recent
experiments,16 it is restricted to the special case where the
current channels and their connecting bridges are made of
the same material, and where the current channels are of
equal geometrical dimensions. Thus, the model of Ref. 4
gives no hint on the important effects of contaminants at the
electrical contact.

In this paper, we substantially generalize Holm’s classi-
cal a-spot theory to higher dimensions, including vastly dif-

ferent materials at the joints. In so doing, we also greatly
extend Ref. 4 by allowing the contact region to have an
arbitrary electrical resistivity, as would be expected if there
were oxides or contaminants in the contact region. Figure 1
shows the geometry of such a generalized a-spot, region I,
which has a finite axial length 2h, joining two conducting
current channels �II, III�. This figure shows a Cartesian �cy-
lindrical� current channel with half channel width �radius� of
a, b, and c �a�b ,a�c�, and electrical resistivity �1, �2, and
�3. It is assumed that the axial extents of channels II and III
are so long that the current flow in these channels is uniform
far from the contact region, I. In this paper, we construct the
scaling laws for the total electrical resistance in regions II, I,
and III, including the interfaces of these regions for arbitrary
values of a, b, c, h, �1, �2, and �3 �cf. Eqs. �7� and �8��.

We shall first consider the special case h�a for the con-
tact region, I, so that the electrostatic fringe field at one in-
terface �at z=0� has an exponentially small influence on the
other interface �at z=2h�, and vice versa. The contact resis-
tance at the interface between regions II and I, for instance,
is then the same as if regions II and I were semi-infinite in
the axial �z� direction �Fig. 2�. The current flow in the semi-
infinite geometry shown in Fig. 2 may be formulated exactly
for both Cartesian and cylindrical channels. From this exact
formulation, we obtain the interface resistance between re-
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FIG. 1. �Color online� Two current channels, II and III, are made in contact
through the bridge region, I, in either Cartesian or cylindrical geometries.
Holm’s a-spot corresponds to the cylindrical geometry with h=0, a�b, a
�c. Current flows from left to right.
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gions I and II for arbitrary values of a, b, �1, and �2. The vast
amount of data thus collected allows us to synthesize a
simple scaling law for the interface resistance. This ground-
work for the interface resistance then led to our proposed
scaling laws for the total electrical resistance in regions II, I,
and III, for the geometry shown in Fig. 1, for general values
of a, b, c, h, �1, �2, and �3. We should remark that we have
not provided an exact formulation for the general geometry
shown in Fig. 1. The validity of the scaling laws for Fig. 1 is
then established by our demonstration that these scaling laws
are indeed an excellent approximation in several known lim-
iting cases. They are also spot-checked against the numerical
code, MAXWELL 3D.17 From these scaling laws, we conclude
that, in general, the bulk resistance in the generalized a-spot
region I �Fig. 1� dominates over the resistance at the inter-
faces between regions I and II, and between regions I and III.
The small intrinsic error in the scaling laws is also assessed.

Only the major results will be presented in the main text.
Their derivations are given in the appendices. In Sec. II, the
results for the contact resistance �interface resistance� be-
tween two semi-infinite current channels with dissimilar ma-
terials are presented, for both cylindrical and Cartesian ge-
ometries. The exact theory and the proposed scaling laws are
found to be in excellent agreement in all regimes of the pa-
rameter space. In Sec. III, the scaling laws for the total re-
sistance of a composite current channel �Fig. 1� are proposed
and checked against several known limiting cases, and
against MAXWELL 3D code. Concluding remarks are given in
Sec. IV, where we indicate that the scaling laws may readily
be adapted to thermal contacts under steady state condition.

II. INTERFACE RESISTANCE WITH DISSIMILAR
MATERIALS

The interface resistance between regions I and II of Fig.
1, say, may be accurately evaluated when the axial extent of
each region is much greater than the respective transverse
dimension. It may be formulated exactly when the axial ex-
tent is semi-infinite �Fig. 2�. This section presents the results
of this exact formulation, together with a comparison with
the proposed scaling laws, for both cylindrical and Cartesian
geometry. In Fig. 2, we designate z=0 as the axial location of
the interface, the axial length of region I is L1��a� and the
axial length of region II is L2��b�. Other parameters are
defined in Fig. 2.

A. Cylindrical semi-infinite channel

For the semi-infinite cylindrical current channel �Fig. 2�,
we solve Laplace’s equation for regions I and II, and match
the boundary conditions at the interface, z=0. The details of
the calculations are given in the Appendix A. The total re-
sistance R from z=−L2 to z=L1 is found to be,

�1�

In Eq. �1�, the first and third term represents the bulk resis-
tance in regions II and I, respectively. The second term rep-
resents the interface resistance between regions I and II, Rc,
which is also the contact resistance for Fig. 2 �if regions I
and II are regarded as two current channels�. If we express

this interface resistance as Rc= ��2 /4a�R̄c for the cylindrical

channel, we find that R̄c depends only on the aspect ratio b /a
and the resistivity ratio �1 /�2, as explicitly displayed in Eq.

�1�. The exact expression for R̄c is derived in Appendix A
�cf. Eq. �A7��. In Eq. �A7�, the coefficient Bn is solved nu-
merically in terms of �1 /�2 and b /a, from the infinite matrix
method �cf. Eq. �A4��, and, as an independent check, from
the explicit iterative method for �1 /�2�1 �cf. Eq. �A10��.
The two methods yield identical numerical values of Bn.

These numerical values of Bn then give R̄c from Eq. �A7�.
The exact theory of R̄c �cf. Eq. �A7�� is plotted as a

function of b /a and �1 /�2 in Fig. 3. It is clear from Fig. 3�a�
that R̄c increases as b /a increases, for a given �1 /�2. It is a
bit surprising, however, that for a very broad range of �1 /�2

from 10−2 to 102, R̄c varies only by a difference of �
�0.080 76 for a given aspect ratio b /a, as is evident in Fig.
3�b�. In the limit b /a→�, this maximum variation is proven
to be �=32 /3	2−1=0.080 76 �cf. Eq. �A14��.

Based on the exact theory and its data over the huge
parameter space shown in Fig. 3, we propose a simple ana-

lytical scaling law of R̄c, the normalized interface resistance,
for the cylindrical semi-infinite current channel with dissimi-
lar materials �Fig. 2�,
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FIG. 2. �Color online� Semi-infinite current channel with dissimilar materi-
als, regions I and II, in either Cartesian or cylindrical geometries. Current
flows from left to right.
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monotonically increasing functions of x=b /a with g�1�=0,

g�� �=1, R̄c0�1� 
Timsit=0, R̄c0��� 
Timsit=1 and, therefore, Eq.

�2� yields R̄c�1,�1 /�2�=0, as expected of the interface resis-
tance from Fig. 2 in the limit b /a=1. The scaling law of
contact resistance, Eq. �2�, is shown by the solid curves in
Fig. 3, which compare extremely well with the exact theory,
Eq. �A7�, shown by the symbols, essentially for the entire
range of 0��1 /�2�� and b /a�1 for the cylindrical chan-
nel �Fig. 2�.

B. Cartesian semi-infinite channel

Similarly, for the semi-infinite Cartesian current channel
�Fig. 2�, we solve Laplace’s equation for regions I and II, and
match the boundary conditions at the interface, z=0. The
details of the calculations are given in the Appendix B. The
total resistance R from z=−L2 to z=L1 is found to be,

�4�

where W denotes the channel width in the third, ignorable
dimension that is perpendicular to the paper, and the rest of
the symbols have been defined in Fig. 2. In Eq. �4�, the first
and third term represents the bulk resistance in regions II and
I, respectively. The second term represents the interface re-

sistance between regions I and II, Rc, which is also the con-
tact resistance for Fig. 2 �if regions I and II are regarded as
two current channels�. If we express this interface resistance

as Rc= ��2 /4	W�R̄c for the Cartesian channel, we find that R̄c

depends only on the aspect ratio b /a and the resistivity ratio
�1 /�2 �similar to the cylindrical case� as explicitly displayed

in Eq. �4�. The exact expression for R̄c is derived in Appen-
dix B �cf. Eq. �B7��. In Eq. �B7�, the coefficient Bn is solved
numerically in terms of �1 /�2 and b /a, from the infinite ma-
trix method �cf. Eq. �B4��, and, as an independent check,
from the explicit iterative method for �1 /�2�1 �cf. Eq.
�B10��. The two methods yield identical numerical values of

Bn. These numerical values of Bn then give R̄c from Eq. �B7�.
The exact theory of R̄c �cf. Eq. �B7�� is plotted as a

function of b /a and �1 /�2, as shown in Fig. 4. It is clear that

from Fig. 4�a� that R̄c increases as b /a increases, for a given

�1 /�2. In fact, R̄c diverges logarithmically as b /a�1, as
shown in Eq. �6� and Fig. 6 below. Again, similar to the
cylindrical case, it is found that for a very broad range of

�1 /�2 from 10−2 to 102, R̄c varies at the most by a difference
of 0.4548 for a given aspect ratio b /a of the Cartesian chan-
nel, as is evident in Fig. 4�b�. The constant 0.4548 is derived
in the limit b /a→� in Appendix B.

Based on the exact theory and its data over the huge
parameter space shown in Fig. 4, we propose a simple ana-

0.0

0.5

1.0

0 10 20 30

N
o
rm

a
liz

e
d

c
o
n
ta

c
t

re
s
is

ta
n
c
e

b/a

 !"#$%!"#&'$(()*+,(-./!./!

 !"#$%!"#&'$)*+,(-./!./!

 !"#$%!"#&'(0($)*+,(-./!./!

100

1

0.01

 1/ 2

(a)

c
e

b/ 30 1

0.0

0.5

1.0

0.01 1.00 100.00

N
o
rm

a
liz

e
d

c
o
n
ta

c
t

re
s
is

ta
n
c

 1/ 2

b/a = 30.1

10.1

4.76

1.96

1.01

(b)

FIG. 3. �Color online� Comparison of R̄c�b /a ,�1 /�2� according to the exact
theory �symbols� and to the simple scaling law �Eq. �2�, solid lines� for

semi-infinite cylindrical current channels, I and II. �a� R̄c as a function of

aspect ratio b /a. �b� R̄c as a function of resistivity ratio �1 /�2. The dashed

lines in �b� respresent the cylindrical a-spot theory of Timsit �R̄c0�b /a� 
Timsit,
Eq. �3��.
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FIG. 4. �Color online� Comparison of R̄c�b /a ,�1 /�2� according to the exact
theory �symbols� and to the simple scaling law �Eq. �5�, solid lines� for

semi-infinite Cartesian current channels, I and II. �a� R̄c as a function of

aspect ratio b /a. �b� R̄c as a function of resistivity ratio �1 /�2. The dashed

lines in �b� respresent the Cartesian a-spot theory �R̄c0�b /a� 
LTZ, Eq. �6��.
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lytical scaling law of R̄c, the normalized interface resistance,
for the Cartesian semi-infinite current channel with dissimi-
lar materials �Fig. 2�,

R̄c�b

a
,
�1

�2
� � R̄c0	�b

a
�	

LTZ
+ 0.2274 
 g�b

a
�


� 2�1

�1 + �2
�, �Cartesian� , �5�

R̄c0�b/a�
LTZ = 4 ln�2b/	a� + 4 ln�	/2� 
 f�b/a� ,

f�b/a� = 0 − 0.032 50�a/b� + 1.065 68�a/b�2

− 0.248 29�a/b�3 + 0.215 11�a/b�4,

�6�
g�b/a� = 1 − 2.2281�a/b�2 + 0.1223�a/b�4 − 0.2711�a/b�6

+ 0.3769�a/b�8

where R̄c0�x� 
LTZ is the normalized contact resistance of the
Cartesian “a-spot” derived by Lau, Tang, and Zhang4 for the
special case in Fig. 1: h=0, b=c, and �2=�3 �cf. last para-
graph in Appendix B of the present paper�. It is the Timsit
analog for the Cartesian channel �cf. Eq. �3��. Note that in

Eq. �6�, f�1�=1, f���=0, g�1�=0, g���=1, R̄c0�1� 
LTZ=0,

and d�R̄c0�x� 
LTZ� /dx=0 when x=b /a=1. Note further that,
from Eq. �5�, the normalized interface resistance

R̄c�1,�1 /�2�=0, as expected of Fig. 2 in the limit b /a=1.
The scaling law of contact resistance, Eq. �5�, is shown by
the solid curves in Fig. 4, which compare extremely well
with the exact theory, Eq. �B7�, shown by the symbols, es-
sentially for the entire range of 0��1 /�2�� and b /a�1 for
the Cartesian channel.

III. TOTAL RESISTANCE OF COMPOSITE CHANNEL

The interface resistance established for the semi-infinite
channel in Sec. II prompted us to postulate a scaling law for
the total resistance in a complex channel that is modeled in
Fig. 1. We decompose the total resistance into bulk resistance
and interface resistance. For the time being, we pretend that
the scaling laws for the interface resistance given in Sec. II
are also applicable when the contact region, I, has an arbi-
trary axial length, 2h �Fig. 1�. We shall then verify that such
an assumption introduces an error of at most 10% in the
contact resistance in the worst case, h=0, by comparing with
known results in such a limit. �Recall that the h=0 limit is
simply the a-spot for the symmetric case b=c and �2=�3;
whereas the interface resistance was derived in Sec. II under
the assumption h→��.

Thus, in terms of the parameters defined in Fig. 1, for the
cylindrical channel, we propose that the scaling law for the
total electrical resistance in regions II, I, and III, including
the interfaces of these regions is of the form,

R =
�2L2

	b2 +
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4a
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+
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	c2 , �Cylindrical� , �7�

where R̄c is given by Eq. �2�. Similarly, for the Cartesian
channel, the proposed scaling law for the total electrical re-
sistance in regions II, I, and III, including the interfaces of
these regions reads,

R =
�2L2

2b 
 W
+

�2

4	W
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a
,
�1

�2
� +

�1 
 2h

2a 
 W

+
�3

4	W
R̄c� c

a
,
�1

�3
� +

�3L3

2c 
 W
, �Cartesian� , �8�

where R̄c is given by Eq. �5�, and W denotes the channel
width in the third, ignorable dimension that is perpendicular
to the paper.

In both Eqs. �7� and �8�, the first, third, and fifth term
represent, respectively, the bulk resistance in regions II, I,
and III. The second and fourth term represent the interface
resistance, respectively, at the left interface between regions I
and II, and at the right interface between regions I and III. If
one considers region I as the electrical contact between cur-
rent channel II and current channel III, then the second, third
and fourth terms combine to give the contact resistance be-
tween these two current channels.

We shall now compare the scaling laws, Eqs. �7� and �8�,
with the results in various limits, and with sample calcula-
tions using a numerical code.

Case A: hša

When the axial length �2h� of the contact region, I, much
exceeds its transverse dimension, a, the electrostatic fringe
field at one interface has an exponentially small influence on
the other interface �cf. Eqs. �A1� and �B1� of the appendi-
ces�. Thus, the contact resistance at the left interface between
regions II and I, for instance, is then the same as if regions II
and I were semi-infinite in the axial direction, which has
been discussed in great detail in Sec. II above. Similar com-
ments apply to the contact resistance at the right interface
between regions I and III. Equations �7� and �8� are then
clearly valid as the five terms represent the five components
of the total resistance �bulk and interface�, all in series from
left to right in Fig. 1.

Case B: h\0

In the opposite limit of Case A, the axial length 2h in
region I is much smaller than a, with h=0 being the limiting
case. In the latter limit, the third term in the right-hand side
�RHS� of Eqs. �7� and �8� vanishes identically, and the con-
tact resistance is then given by the sum of the second and
fourth terms, which we compare with known results in sev-
eral special cases. This is a stringent test because the inter-
face resistance, represented by the second and the fourth
terms, is derived under the assumption of h�a.
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For the cylindrical �Cartesian� channel, the h=0 limit
becomes the a-spot analyzed by Holm1 and Timsit2 �by Lau,
Tang, and Zhang, cf. Fig. 6� for the symmetrical case �2

=�3 and b=c. The scaling laws for the contact resistance,
Eqs. �7� and �8�, indeed become identical to these a-spot
theories for �1 /�2→0, as shown in Eqs. �2� and �5�, and also
in Figs. 3�b� and 4�b�. The reason is that in this symmetrical
case ��2=�3 , b=c , h→0�, the current flow is perpendicu-
lar to the contact area, at the location of the a-spot, by sym-
metry of the geometry. Thus the entire a-spot is an equipo-
tential surface, the same as if region I is made of perfectly
conducting material ��1→0�. In the opposite limit �1 /�2

→�, the contact resistance according to the scaling law dif-
fers from the a-spot theory by at most 7.4% �8.2%� for a
cylindrical �Cartesian� channel from the data presented in
Figs. 3 and 4.

In yet another limit, h→0, b /a→�, c /a→�, but �2

��3, our scaling law, Eq. �7� for the cylindrical channel,
gives a value of contact resistance that differs by at most 8%
from Holm’s established value of ��2+�3� /4a for this limit-
ing case.1

Case C: �1=�2=�3

In this case, all channels are made of the same material.
The symmetrical case b=c was analyzed in great detail in
Lau and Tang,4 and was subjected to an experimental test by
Gomez et al.16 The scaling laws given in the present paper,
aimed at vastly different values of �1, �2 and �3, introduce a
small error that is represented by the last term in Eqs. �2� and
�5�. This small error, already included in Figs. 3 and 4, is the
price we pay for the explicit scaling law that is applicable
over a huge variation in materials properties and in channel
geometries, as demonstrated in these figures.

Case D: Comparison of MAXWELL 3D code

A sample comparison of the scaling law, Eq. �7�, against
the MAXWELL 3D �Ref. 17� simulation of a cylindrical chan-
nel is shown in Fig. 5. Excellent agreement is noted. In this
example, we set �1=0.25  m �and 0.60  m�, �2

=0.038  m, �3=0.001  m, a=4 mm, b=8 mm, c
=10 mm, the lengths of conductor II and III were equal, 2h

ranging from 1.5 to 16 mm, the total axial length of the
current channel simulated was fixed at 80 mm, and an exci-
tation voltage of 10 V was applied.

IV. CONCLUDING REMARKS

Having performed several checks on the validity of the
scaling laws for the contact resistance joining two current
channels, II and III �Fig. 1�, we may now draw some general
conclusions regarding the contact resistance that is com-
prised of the second, third and fourth terms in the RHS of the
scaling laws, Eqs. �7� and �8�. The third term represents the
bulk resistance of the electrical contact, region I, and the
second and fourth term represents the interface resistance at
z=0 and at z=2h �Fig. 1�.

�a� If the electrical contact �region I� is highly resistive
��1��2 ,�1��3�, then the bulk resistance �the third
term on the RHS of Eqs. �7� and �8�� dominates over
the interface resistance �the second and fourth term on
the RHS of Eqs. �7� and �8�� once the contact region’s
axial length �2h� exceeds a few times ��2 /�1�a and
��3 /�1�a.

�b� Once the geometry �a ,b ,c ,h� is specified, the interface
resistance depends mainly on the electrical resistivity
of the main channel ��2 ,�3�; it is insensitive to the
resistivity of the contact region ��1�. To see this, exam-
ine the second term in Eq. �7�, or in Eq. �8�, for in-
stance. This term shows that the interface resistance is
linearly proportional to the current channel resistivity,
�2, but is quite insensitive to the ratio �1 /�2, as shown
in Fig. 3�b� or Fig. 4�b�.

�c� The exact formulation for the interface resistance in
Fig. 1 is quite difficult to obtain for general values of a,
b, c, h, �1, �2, and �3. The interface resistance is not
easy to extract from a numerical code either, especially
when there is a large contrast between �1 and �2 or
between �1 and �3 or between any of the geometric
dimensions h, a, b, c, L2, and L3. Likewise, experimen-

FIG. 5. �Color online� Sample calculations of the total resistance R of a
cylindrical channel according to MAXWELL 3D simulation �symbols� and the
scaling law, Eq. �7�, �solid lines�.
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normalized contact resistance of the Cartesian a-spot �h=0�.
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tal verification for the interface resistance is not easy to
achieve either, if there is a large contrast in any of the
above-mentioned parameters. Despite some small in-
trinsic errors, of order 10% or less, the simple scaling
laws established in this paper then offer some new in-
sight that is hitherto unavailable in the existing litera-
ture. They may also be used as the building block for a
statistical theory.3

Finally, one is tempted to adapt the proposed scaling
laws given in this paper to the steady state heat flow in a
thermally insulated channel. This may be done with Fig. 1 by
replacing the electrical conductivity �1 /�j� with the thermal
conductivity ��j�, j � 1, 2, 3, in the different regions, assum-
ing that the �j’s are independent of temperature.
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APPENDIX A: THE CONTACT RESISTANCE OF A
CONSTRICTED CYLINDRICAL CHANNEL

Referring to Fig. 2, regions I and II are semi-infinite in
the axial z-direction, with the interface at z=0. For the cy-
lindrical case, the Laplace’s equation yields,

�+�r,z� = A0 + �
n=1

�

AnJ0��nr�e−�nz − E+�z, z � 0,r � �0,a� ,

�−�r,z� = �
n=1

�

BnJ0��nr�e+�nz − E−�z, z � 0,r � �0,b� , �A1�

where �+ and �− are the electrical potential in the semi-
infinite cylindrical channel I and II respectively, E+� and E−�

are the uniform electric fields far from z=0, J0�x� is the
zeroth order Bessel function of the first kind, �n and �n

satisfy �na=�nb=Xn, where Xn is the nth positive zero of
J1�x�=dJ0�x� /dx, and An and Bn are the coefficients that need
to be solved. Without loss of generality, we set the coefficient
B0 to zero in Eq. �A1� for convenience. Current conservation
requires that a2E+� /�1=b2E−� /�2.

At the interface z=0, continuity of electrical potential
and current density leads to the following boundary condi-
tions:

�+ = �−, z = 0,r � �0,a� �A2a�

1

�1

��+

�z
=

1

�2

��−

�z
, z = 0, r � �0,a� , �A2b�

��−

�z
= 0, z = 0, r � �a,b� , �A2c�

From Eqs. �A1� and �A2a�, An is related to Bn as,

A0 = 2�
n=1

�

Bn
J1�Xna/b�

Xna/b
, �A3a�

An = �
m=1

�

Bmgmn,

gmn =
2

a2J0
2�Xn��0

a

rJ0��nr�J0��mr�dr, n � 1. �A3b�

A change in integration variable shows that gmn depends only
on b /a, m, and n.

Combining Eqs. �A2b�, �A2c�, and �A3b�, we obtain

Bn +
a

b

�2

�1

1

XnJ0
2�Xn� �

m=1

�

�mnBm =
�2

�1

2J1�Xna/b�
Xn

2J0
2�Xn�

,

n = 1,2,3, . . . , �A4�

where

�mn = �nm = �
l=0

�

gmlgnlXlJ0
2�Xl� , �A5�

and gml and gnl is in the form of the last part in Eq. �A3b�. In
writing Eq. �A4�, we have set aE+�=−1 for simplicity. It is
easy to show that Eq. �A5� can be written as

�nm = �mn = �
l=1

�
4x2XmXnXlJ1�Xmx�J1�Xnx�

�Xl
2 − Xm

2 x2��Xl
2 − Xn

2x2�
, x = a/b ,

�A6�

which indicates that �nm=�mn�1 /Xn�1 /n as n→�. From
Eq. �A4�, Bn�1 /Xn

2�1 /n2 as n→�. Therefore, the infinite
matrix equation, Eq. �A4�, can be inverted directly to solve
for Bn with convergence guaranteed. We remark in passing
that the determinant of the infinite matrix with elements �mn

is zero, i.e., det��mn� � 0.
The total resistance between an arbitrary point �z=L1� in

region I and an arbitrary point �z=−L2� in region II, both far
from the interface, is R= ��L2−�L1� / I, where I
= 
	a2E+� /�1
=	a /�1 is the total current in the conducting
channel. The contact resistance Rc, which is the difference
between the total resistance R and bulk resistance Ru

=�1L1 /	a2+�2L2 /	b2, is found from Eqs. �A1� and �A3a�,

Rc =

A0


I
=

�2

4a
R̄c,

R̄c = R̄c�b

a
,
�1

�2
� =

8

	

�1

�2
	�

n=1

�

Bn
J1�Xna/b�

Xna/b 	 , �A7�

which is the exact expression for the contact resistance at the
interface of two semi-infinite cylindrical channels of dissimi-
lar materials. It appears in Eq. �1� of the main text. Given the
resistivity ratio �1 /�2 and aspect ratio b /a, the coefficients
Bn are solved numerically from Eq. �A4� by using either the
infinite matrix method, or the explicit iterative method,
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which will be discussed next. R̄c is then obtained from Eq.
�A7�.

To solve for the coefficient Bn more efficiently, an ex-
plicit iterative method is available for �2 /�1�1. From Eq.
�A4�, to the lowest order in �2 /�1, we have

Bn
�1� �

�2

�1

2J1�Xna/b�
Xn

2J0
2�Xn�

, n � 1. �A8�

To the next order,

Bn
�2� �

�2

�1

2J1�Xna/b�
Xn

2J0
2�Xn�

−
a

b

�2

�1

1

XnJ0
2�Xn� �

m=1

�

�mnBm
�1�, n � 1.

�A9�

To the kth order, the solution becomes,

Bn
�k� �

�2

�1

2J1�Xna/b�
Xn

2J0
2�Xn�

−
a

b

�2

�1

1

XnJ0
2�Xn� �

m=1

�

�mnBm
�k−1�,

n � 1, k � 2,

�A10�

which is the Taylor expansion of Bn in increasing power of
�2 /�1. This iterative scheme is explicit. It gives identical
numerical solutions as the infinite matrix method for �2 /�1

�1, but converges faster. It converges very rapidly for
�2 /�1�1, in which case Eq. �A8� is an excellent approxima-
tion and Eq. �A7� gives,

R̄c�b

a
,
�1

�2
� �

16

	
�
n=1

�
J1

2�Xna/b�
Xna/b

1

Xn
2J0

2�Xn�
, �1/�2 � 1.

�A11�

Equation �A11� can be further simplified if a /b�1,

R̄c�b

a
,
�1

�2
� � 8�

n=1

�
J1

2�Xna/b�
Xn

2a/b
, �1/�2 � 1, a/b � 1,

�A12�

since the first few terms in the infinite sum of Eq. �A11�
hardly contribute, and the remaining terms may be approxi-
mated by using the asymptotic formula of J0�Xn� for large
Xn. Note that to within an error of less than 0.22%,

Xn � �n + 1/4�	, n � 3. �A13�

Thus, in the limit a /b→0, we obtain from Eq. �A12�,

R̄c�b

a
,
�1

�2
� � 8�

1

�

dn
J1

2�Xna/b�
Xn

2a/b
�

8

	
�

0

�

d�
J1

2���
�2

=
32

3	2 ; �1/�2 � 1, a/b → 0, �A14�

where we have used Eq. �A13� to write the second integral,
which is evaluated exactly in Whittaker and Watson.18

In the opposite limit, �1 /�2→0, R̄c approaches the value
of the a-spot analyzed by Holm1 and Timsit2 for the sym-
metrical case �2=�3 and b=c, as discussed in Sec. III, Case
B, and also shown in Fig. 3�b�. As a /b→0, the exact theory

of symmetrical a-spot gives R̄c=1. Thus, the maximum

range of variation in R̄c for different �1 /�2 is �=32 /3	2

−1=0.080 76, as displayed in Eq. �2� of the main text, and in
Fig. 3.

APPENDIX B: THE CONTACT RESISTANCE OF A
CONSTRICTED CARTESIAN CHANNEL

Referring to Fig. 2, regions I and II are semi-infinite in
the axial z-direction, with the interface at z=0. For the two-
dimensional Cartesian channel, the y-axis is orthogonal to
the z-axis in the plane of the paper. The Laplace’s equation
yields,

�+�y,z� = �
n=0

�

An cos�n	y

a
�e−n	z/a − E+�z, z � 0, y � �0,a� ,

�−�y,z� = �
n=1

�

Bn cos�n	y

b
�e+n	z/b − E−�z, z � 0, y � �0,b� ,

�B1�

where �+ and �− are the electrical potential in the semi-
infinite Cartesian channel I and II respectively, E+� and E−�

are the uniform electric fields far from z=0, and An and Bn

are the coefficients that need to be solved. For convenience,
the coefficient B0 is set to zero in Eq. �B1�. Current conser-
vation requires that aE+� /�1=bE−� /�2.

At the interface z=0, continuity of electrical potential
and current density leads to the following boundary condi-
tions:

�+ = �−, z = 0, y � �0,a� , �B2a�

1

�1

��+

�z
=

1

�2

��−

�z
, z = 0, y � �0,a� , �B2b�

��−

�z
= 0, z = 0, y � �a,b� , �B2c�

From Eqs. �B1� and �B2a�, An is related to Bn as,

A0 = �
n=1

�

Bn
sin�n	a/b�

n	a/b
, �B3a�

An = �
m=1

�

Bmgmn,

gmn =
2

a
�

0

a

cos�n	y

a
�cos�m	y

b
�dy, n � 1. �B3b�

A change in integration variable shows that gmn depends only
on b /a, m, and n.

Combining Eqs. �B2b�, �B2c�, and �B3b�, we obtain

Bn +
1

n

�2

�1
�
m=1

�

�nmBm =
2

n	

�2

�1

sin�n	a/b�
n	a/b

, n = 1,2,3, . . . ,

�B4�

where
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�nm = �mn = �
l=0

�

lgnlgml, �B5�

and gml and gnl is in the form of last part in Eq. �B3b�. In
writing Eq. �B4�, we have set aE+�=−1 for simplicity. It is
easy to show that Eq. �B5� can be written as

�nm = �mn = �
l=1

�
4mnlx2 sin�n	x�sin�m	x�

	2�l2 − n2x2��l2 − m2x2�
, x = a/b ,

�B6�

which indicates that �nm=�mn�1 /n as n→�. From Eq.
�B4�, Bn�1 /n2 as n→�. Therefore, the infinite matrix equa-
tion, �B4�, can be inverted directly to solve for Bn with con-
vergence guaranteed. We remark in passing that the determi-
nant of the infinite matrix with elements �mn is zero, i.e.,
det��mn� � 0.

The total resistance between an arbitrary point �z=L1� in
region I and an arbitrary point �z=−L2� in region II, both far
from the interface, is R= ��L2−�L1� / I, where I
= 
2aW�E+� /�1�
=2W /�1 is the total current in the conduct-
ing channel, where W is the channel width in the third, ig-
norable dimension. The contact resistance Rc, which is the
difference between the total resistance R and bulk resistance
Ru=�1L1 /2aW+�2L2 /2bW, is found from Eqs. �B1� and
�B3a�,

Rc =

A0


I
=

�2

4	W
R̄c,

R̄c = R̄c�b

a
,
�1

�2
� = 2	

�1

�2
	�

n=1

�

Bn
sin�n	a/b�

n	a/b 	 , �B7�

which is the exact expression for the contact resistance at the
interface of two semi-infinite Cartesian channels of dissimi-
lar materials. It appears in Eq. �4� of the main text. Given the
resistivity ratio �1 /�2 and aspect ratio b /a, the coefficients
Bn are solved numerically from Eq. �B4� by using either the
infinite matrix method, or the explicit iterative method,

which will be discussed next. R̄c is then obtained from Eq.
�B7�.

To solve for the coefficient Bn more efficiently, an ex-
plicit iterative method is available for �2 /�1�1. From Eq.
�B4�, to the lowest order in �2 /�1, we have

Bn
�1� �

2

n	

�2

�1

sin�n	a/b�
n	a/b

, n � 1. �B8�

To the next order,

Bn
�2� �

2

n	

�2

�1

sin�n	a/b�
n	a/b

−
1

n

�2

�1
�
l=1

�

�nlBl
�1�, n � 1. �B9�

To the kth order, the solution becomes,

Bn
�k� �

2

n	

�2

�1

sin�n	a/b�
n	a/b

−
1

n

�2

�1
�
l=1

�

�nlBl
�k−1�,

n � 1, k � 2, �B10�

which is the Taylor expansion of Bn in increasing power of
�2 /�1. This iterative scheme is explicit. It gives identical
numerical solutions as the infinite matrix method for �2 /�1

�1, but converges faster. It converges very rapidly for
�2 /�1�1, in which case Eq. �B8� is an excellent approxima-
tion and Eq. �B7� gives,

R̄c�b

a
,
�1

�2
� = 4�

n=1

�
1

n

sin2�n	a/b�
�n	a/b�2 , �1/�2 � 1. �B11�

In the opposite limit, �1 /�2→0, R̄c approaches the a-spot
value for the Cartesian channel that is analyzed in Ref. 4 for
the symmetrical case �2=�3 and b=c. This is discussed in
Sec. III, Case B, and also shown in Fig. 4�b�. Thus, the

maximum range of variation in R̄c for different �1 /�2 is the

difference between Eq. �B11� and R̄c0�x� 
LTZ that is given by
Eq. �6� of the main text. This difference is approximately the
constant 0.4548 for b /a�1, as shown in Eq. �5� of the main
text, and in Fig. 4.

Finally, we remark that the exact theory of Lau and
Tang4 for the a-spot of the Cartesian channel is recently syn-

thesized into a useful and accurate formula, R̄c0�x� 
LTZ that is
given in Eq. �6� of the main text. Figure 6 shows that this
new formula is virtually identical to the exact theory of Ref.

4. In Fig. 6, we also compare R̄c0�x� 
LTZ with the less accu-
rate formula derived in Ref. 4,

R̄c � 4 ln� 2

	

b

a
�, �1/�2 → 0, a/b � 1. �B12�
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