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On the Spreading Resistance of Thin-Film Contacts
Peng Zhang, Student Member, IEEE, Y. Y. Lau, Fellow, IEEE, and Roland S. Timsit

Abstract—The spreading resistance of a microscopic area of
contact (the “a-spot”) located in a thin film is studied for both
Cartesian and cylindrical geometries. The effect of film thickness
h on the spreading resistance is evaluated over a large range of
aspect ratios. In the limit h → 0, the normalized thin-film spread-
ing resistance Rs converges to the finite values, i.e., 2.77 for the
Cartesian case and 0.28 for the cylindrical case. An interpretation
of these limits is given. Extension to a general a-spot geometry is
proposed.

Index Terms—Constriction resistance, contact resistance, elec-
trical contacts, skin depth, spreading resistance, thin films.

I. INTRODUCTION

THIN-FILM contact is a very important issue in many
areas, such as integrated circuits [1], thin-film devices

[2], carbon nanotube and carbon nanofiber-based cathodes and
interconnects [3], and microelectromechanical system [4], etc.
Electrical contact has surfaced as a crucial problem in the
ongoing studies at the University of Michigan of wire-array
Z-pinch [5], high-power microwave generation [6] and protec-
tion [7], triple-point junctions [8], field emitters [9], and heating
phenomenology [10].

Holm’s classical a-spot model [11] gives the electrical
spreading resistance of a circular constriction in a bulk interface
of uniform resistivity as

Rs =
ρ

4a
(1)

where ρ and a are the resistivity of the conductor and the radius
of the constriction, respectively. The spreading resistance Rs

stems from the spreading of electrical field lines (current flow
lines) from the constriction toward the bulk of the conductor.
The contact resistance, or constriction resistance, between two
bulk solids of same materials is Rc = 2Rs = ρ/2a. Equation
(1) is the basis of many subsequent works [12]–[17]. Although
recent generalizations of Holm’s a-spot have included the
effects of 3-D contact geometries [13], [14], [18], [19] and
of dissimilar materials [20], [21], these generalizations are
inapplicable to the thin-film contact, as shown in Fig. 1. This is
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Fig. 1. Cylindrical (or Cartesian) electrical contact between two thin films of
the same material. The z-axis is the axis of rotation for the cylindrical geometry.

Fig. 2. Cylindrical or Cartesian geometries for the (a) electrode directly
applied on the thin film and the (b) region of zero resistivity in contact with
the thin film. The z-axis is the axis of rotation for the cylindrical geometry. For
both (a) and (b), the boundary conditions, the potential profile, and therefore
the spreading resistance in the thin film are equivalent to that in Fig. 1.

because in a thin-film contact, spreading resistance arises from
the sharp bending of current flow lines in the immediate vicinity
of the constriction edges, with subsequent spreading into the
thin film over a distance of one constriction radius or less
[22]–[24]. Beyond this distance, the current flow lines are par-
allel to the film boundaries, and any additional contribution of
spreading resistance to overall resistance becomes insignificant.
In this paper, we focus on the spreading resistance in the thin
film schematically illustrated in Figs. 1 and 2.

Referring to Fig. 1, due to symmetry, the a-spot area (the
constriction interface AB) is an equipotential surface, and all
current flow lines are perpendicular to this interface. This is
also the situation for the two cases shown in Fig. 2, where
Fig. 2(a) shows an electrode of size a being applied directly
to the conducting thin film, and Fig. 2(b) shows a post of zero
resistivity kept in contact with the thin film with an interface
of size a. Thus, the boundary conditions, the potential profile,
and therefore the spreading resistance in the thin-film region
are equivalent in all three geometries shown in Figs. 1 and 2,
for both Cartesian and cylindrical geometries. Once we know
the spreading (or constriction) resistance of any one case, the
result will be immediately applicable to the other two cases.

By convention [21]–[24], the thin-film spreading resistance
Rs here is defined as

Rs = RT − Rbulk (2)
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which is the difference between the total resistance, i.e., RT ,
from AB to CD (and GH) and the bulk resistance, i.e., Rbulk,
from BE to CD and from AF to GH [cf. Fig. 2(a)]. The bulk
resistances [21]–[24] are

Rbulk = ρ(b − a)/2hW, [Cartesian] (3a)
Rbulk = (ρ/2πh)�n(b/a), [cylindrical] (3b)

for the Cartesian case and cylindrical case, respectively, where
W in the Cartesian geometry denotes the channel width in the
third ignorable dimension that is perpendicular to the paper, and
b, which is not labeled in Figs. 1 and 2, is the y (or r) coordinate
of the boundary point C for the Cartesian (or cylindrical) case.
All other symbols have been defined in Figs. 1 and 2. It is
worth noting that our choice of the bulk resistance, i.e., Rbulk

in (3), is arbitrary and, therefore, so is the definition of the
spreading resistance Rs in (2). This is because the current flow
lines do not sharply curve and become parallel to the thin-film
surface exactly at y (or r) = a (cf. Figs. 4 and 6). Despite
the arbitrariness of the definitions of Rs and Rbulk, the total
resistance RT = Rs + Rbulk, which is obtained directly from
exact calculations and numerical simulations, remains the same.
To be consistent with [21]–[24], we shall continue to use (2)
and (3) as definitions of Rs and Rbulk in this paper. As we shall
see, this definition allows ready extension of the theory to a
general a-spot geometry in the limit h → 0 (h = film thickness,
cf. Fig. 1). We shall pay close attention to this limiting case in
our interpretation of the results.

It is worth mentioning that the spreading resistance for the
configuration shown in Fig. 2(a) was treated by other workers
[25]–[30]. In these works, the boundary GD was an equipo-
tential surface so that the current flow just above GD was
orthogonal to GD. In contrast, in this paper, the current flow
just above GD is parallel to GD, as we impose a constant
potential on the boundaries CD and HG [22]–[24]. As a result,
there is a key difference in the limit h → 0, where the total
resistance vanishes in [25]–[30] as the current path length van-
ishes, whereas in this paper, the total resistance becomes infinite
because the cross-sectional area of current flow vanishes.

In Section II, we consider the dc Cartesian thin film. In
Section III, we consider the dc cylindrical thin film. Concluding
remarks are given in Section IV, where extensions of the model
are suggested.

II. THIN-FILM CONTACT IN CARTESIAN GEOMETRY

The Cartesian thin-film geometry in Fig. 2(a) was studied by
Hall [2] using conformal mapping calculation. If the spreading
resistance is defined in (2) and (3a), Hall’s exact calculation
yields (cf. [2, Fig. 2] and [2, eq. (12)])

Rs =
ρ

4πW
Rs (4)

Rs = 2π
a

h
− 4 ln

[
sinh

(π

2
a

h

)]
(5)

where W denotes the channel width in the third ignorable
dimension, and the rest of the symbols have been defined in
Figs. 1 and 2.1 The normalized thin-film spreading resistance,

1The r (or y) coordinates of the boundary points C and H is b (not shown in
Figs. 1 and 2). We assume that b � a or b � h, in which case all formulas in
this paper are valid. See [23] for a detailed explanation. In all MAXWELL 2-D
simulations shown in Figs. 3 and 5, we fixed b = 8.8 cm.

Fig. 3. Normalized thin-film spreading resistance Rs as a function of a/h,
for the Cartesian structure in Figs. 1 and 2. The solid line is for the conformal
mapping calculations [see eq. (5)]. The dashed line, which overlaps with the
solid line, is for the series expansion calculations (cf. [23, eq. (A8)]). The
symbols are for the MAXWELL 2-D simulation. Two sets of simulation were
performed. The first set (circles) was fixed at a = 2 cm, and varying h from 2
to 0.1 cm; the second set (crosses) was fixed at h = 0.1 cm, and varying a from
3 to 7 cm.

Fig. 4. Field lines in the right half of the Cartesian thin film in Figs. 1 and 2,
calculated from both series expansion method (cf. [23, eq. (A8)]) (solid lines)
and conformal mapping [2] (dashed lines), for the case of a/h = 10.1. In the
series expansion method, we set ρ1 = 0.01ρ in Fig. 2(b).

i.e., (5), is plotted in Fig. 3. Most recently, Zhang et al. [23]
have analytically calculated the spreading (or contact) resis-
tance of the Cartesian thin-film geometry in Fig. 2(b) by using
the series expansion method (cf. [23, eq. (A8)] and [23, Fig. 5].
In the limit of ρ1 → 0 in Fig. 2(b) (ρ1 = 0.01ρ was used in
[23]), their theory gives identical results to that of Hall, i.e., (5),
as shown in Fig. 3.

It is easy to show from (5) that in the limit of a/h → ∞,
Rs converges to the constant minimum value of 4�n2 = 2.77,
which is valid for a/h > 2, as shown in Fig. 3. It is worth noting
that the conformal mapping calculation is exact, without any
approximation, and is therefore valid for arbitrary values of a
and h, even when a and h become arbitrarily small.1 The field
lines in the right half of the Cartesian thin film in Figs. 1 and 2
are shown in Fig. 4. These field lines were obtained by the
series expansion method [23] on the model shown in Fig. 2(b).
In addition, shown in Fig. 4 is the validation using the exact
solution of conformal mapping [2].

To further confirm the nonzero limit of Rs = 2.77 as h → 0
for the Cartesian thin-film contact, we performed numerical
simulations by using the MAXWELL 2-D code2 for various
combinations of parameters on the geometry shown in Fig. 2(a).
The MAXWELL 2-D code results are included in Fig. 3.1

The finite-element-method-based MAXWELL 2-D simulations
were performed with great accuracy—the convergence iteration
error was controlled to be < 0.002% for each case represented

2See http://www.ansoft.com for MAXWELL 2-D software. For the present
electrostatic problem, MAXWELL 2-D uses automatic meshing and finite-
element analysis to solve the Laplace equation.
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by the symbols in Fig. 3. It is clear that the simulations are in
excellent agreement with the analytical calculations, from both
conformal mapping [2] and series expansion method [23].

To further probe into the nonzero limit of Rs = (4�n2) ×
(ρ/4πW )∼=2.77×(ρ/4πW ) as h→0, at a finite value of a, let
us compute the width a′ such that the bulk resistance between
y=a′ and y=b (and between y=−a′ and y=−b)1 is equal
to the total resistance RT as h → 0. Thus, we have RT =
ρ(b − a′)/2Wh= Rs + Rbulk = (4�n2) × (ρ/4πW ) + ρ(b −
a)/2Wh, yielding

a′ = a

(
1 − 2�n2

π
h/a

)
= a(1 − 0.44h/a), h/a � 1. (6)

Thus, a′ = 0.956a if h/a = 0.1, as in Fig. 4. That is, the
distance between a′ and a gives the length scale over which the
spreading resistance occurs (see Fig. 4). Note the possibility
of enhanced local heating between a′ and a because of the
crowding of the field lines there. Such localized enhanced
heating has been observed in bulk electrical contacts [31], but
its contribution to contact overheating may be greatly magnified
in a thin-film contact.

Another interpretation of a′ in the limit h → 0 follows.
We may express the total resistance as RT = R′

s + R′
bulk. Let

R′
bulk = ρ(b − a′)/2hW . Then the residual resistance R′

s = 0
in the limit h → 0. Comparing with (2), this shows the arbitrari-
ness in the decomposition of the total thin-film resistance into
the bulk and spreading resistance. It was the total resistance that
Hall [2] calculated.

III. THIN-FILM CONTACT IN CYLINDRICAL GEOMETRY

The (r–z) geometry of a cylindrical thin film cannot be
treated with conformal mapping. The spreading resistance of
a thin conducting film for the cylindrical geometry (see Fig. 1)
was analytically calculated by Timsit (cf. [24, Fig. 7] and [24,
eq. (18)]), who approximated the current density distribution
through the a-spot of this film with the known current density
distribution through the a-spot in a semi-infinite bulk solid
[14]. Timsit stated that this approximation is reliable only for
0 < a/h ≤ 0.5 [24] (cf. dashed curve in Fig. 5). Most recently,
Zhang et al. [23] have confirmed Timsit’s results for 0 < a/h ≤
0.5 and extended his results for a/h up to ten (cf. [23, Fig. 10]).
Their results, obtained from the exact theory of series expan-
sion, were synthesized into a simple useful polynomial1 [23],
as (7) and (8), shown at the bottom of the page, where the
spreading resistance Rs was defined in (2) and (3b). The solid
curve in Fig. 5 plots (8), suggesting a finite constant value of
about 0.28 for Rs as a/h → ∞. Existence of a similar nonzero
asymptotic limit was proved for the Cartesian case.

To verify the nonzero limit of Rs
∼= 0.28 as h → 0 for the cy-

lindrical thin-film contact, we performed the MAXWELL 2-D

Fig. 5. Normalized thin-film spreading resistance Rs as a function of a/h, for
the cylindrical structure in Figs. 1 and 2. The solid line is for (8), synthesized
from the results of series expansion calculations (cf. [23, eq. (B8)]); the dashed
line is for Timsit’s calculations (cf. [24, eq. (18)]); and the symbols are for the
MAXWELL 2-D simulation. Three sets of simulation were performed. The first
set was fixed at a = 2 cm (circles), and varying h from 2 to 0.1 cm; the second
set was fixed at h = 0.1 cm (crosses), and varying a from 3 to 7 cm; and the
third set was fixed at a = 0.01 cm (diamonds), and varying h from 0.025 to
0.00015 cm.

Fig. 6. Field lines in the right half of the cylindrical thin film in Fig. 2(b),
calculated from the series expansion method (cf. [23, eq. (B8)]), for the case of
a/h = 10.1 and ρ1 = 0.01ρ.

simulation2 for various combinations of parameters on the
geometry shown in Fig. 2(a). The MAXWELL 2-D code results
are included in Fig. 5.1 Similar to the Cartesian case, the
simulations were performed with great accuracy—the conver-
gence iteration error was controlled to be < 0.002% for each
data point represented by symbols in Fig. 5. It is clear from
Fig. 5 that the simulations are in excellent agreement with the
analytical calculations and yield the asymptotic constant value
of ∼0.28. The field lines in the right half of the thin film for the
cylindrical geometry in Figs. 1 and 2 are shown in Fig. 6. Note
the striking resemblance of the field lines in Figs. 4 and 6.

To further probe into the nonzero limit of Rs
∼=

0.28 × (ρ/4a) as h → 0 at a finite value of a, let us compute
the radius a′ such that the bulk resistance between r = a′
and r = b is equal to the total resistance RT as h → 0. Thus,
we have RT = (ρ/2πh)�n(b/a′) = Rs + Rbulk = 0.28 ×
(ρ/4a) + (ρ/2πh)�n(b/a), yielding

a′=ae−0.28×π
2

h
a =ae

−0.44h
a ∼=a(1−0.44h/a), h/a�1 (9)

Rs =
ρ

4a
Rs (7)

Rs(a/h)=
{

1−2.2968(a/h)+4.9412(a/h)2−6.1773(a/h)3+3.811(a/h)4−0.8836(a/h)5, 0.001≤a/h≤1

0.295+0.037(h/a)+0.0595(h/a)2, 1<a/h<10
(8)
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which is identical to (6), derived for the Cartesian thin film.
Thus, a′ = 0.956a if h/a = 0.1, as in Fig. 6 (and in Fig. 4).
The distance between a′ and a gives the length scale over
which the spreading resistance occurs (see Fig. 6). The nonzero
limit of Rs

∼= 0.28 × (ρ/4a) as h → 0, at a finite value of a,
is equivalent to the resistance of a “residual” circular ring of
thickness h and of outer radius a and inner radius a′

Rs =Rresidual circular ring =
ρ

2πh
�n

( a

a′
)

=
ρ

2πh
�n

(
1

1 − 0.44h/a

)
∼= 0.28 × ρ

4a
, h → 0 (10)

where (3b) and (9) have been used. As seen from (10), as h
decreases to zero, the resistance of the “residual” circular ring
region (over which the spreading resistance occurs) remains
a constant, and this might be considered as an interpretation
of the nonzero limit of the spreading resistance Rs

∼= 0.28 ×
(ρ/4a) as h → 0 for the cylindrical case.

A similar argument may be made for the Cartesian case as
(9) and (6) are identical. The distance between a and a′ remains
to be 0.44h, and (10) is modified to read [cf. eq. (3a)]

Rs =Rresidual rectangular strips =
ρ(a − a′)

2hW

=
ρ × 0.44h

2hW
=

ρ

4πW
× 2.77, h → 0. (11)

Once a is fixed, in the limit h → 0, the edge “B” in Fig. 2(a)
looks the same whether it is a circular arc (cylindrical geom-
etry) or a straight line segment pointing out of the paper
(Cartesian geometry), as far as the current flow patterns at B
are concerned. This is why the factor 0.44 appears in both
(6) and (9), and Figs. 4 and 6 look identical. Since 0.28 =
(4�n2)/π2, we conjecture that the asymptotic value for the
cylindrical thin-film spreading resistance is Rs = (4�n2)/π2 =
2.77/π2 = 0.28 as h → 0. The ratio between the “hard limits”
of Rs for the Cartesian and cylindrical thin film is π2 as h → 0.

Finally, although Rs approaches a finite constant as h → 0,
Rs/RT approaches to zero since Rbulk, and therefore, RT ap-
proaches infinity [cf. eq. (3)]. That is, the spreading resistance
contributes to a negligible fraction of the total resistance in the
limit h → 0. The latter property was also shared in [25]–[30],
although in these references, both the total resistance and the
spreading resistance vanish as h → 0.

IV. CONCLUDING REMARKS

In this paper, we study the spreading resistance in the thin-
film contact shown in Figs. 1 and 2, for both Cartesian and
cylindrical geometries. The calculations were performed by
three very different methods: conformal mapping [2], [22],
[23], infinite series expansion [23], and Maxwell 2-D code2, all
yielding the same results. Most importantly, we found that the
normalized thin-film spreading resistance Rs converges to the
finite values, i.e., 2.77 for Cartesian and 0.28 for the cylindrical
case in the limit h → 0. An interpretation of these asymptotic
limits in terms of the residual resistance between a′ and a is
given [see eqs. (10) and (11)]. The crowding of the field lines
between a and a′ could lead to significant ohmic heating there
(see Figs. 4 and 6).

Current crowding is a well-known phenomenon in the area
of contact resistance, for example in metal–semiconductor
contacts where current crowding may have a significant ef-
fect on contact resistance [32]. We point out that there are
differences between metal–metal and metal–semiconductor
contacts. For example, in the transmission line model of a
metal–semiconductor contact [32], [33], the length scale over
which most of the current from a contact into a semiconductor
thin film flows is called the transfer length, LT . From (6) and
Fig. 4, one may argue that LT ∼ 0.44h for the present Cartesian
thin-film model, and this transfer length is due only to the
fringing fields. In the transmission line model [32], there is
another component of transfer length, neglecting the fringing
fields, that is approximately given by LT2 = (rc/rs)1/2, where
rs = ρ/h is the sheet resistance (in Ω/square) in the semi-
conductor thin film under the contact, and rc = Acρc, where
Ac = contact area, and ρc = contact resistivity. The resistivity
ρc arises from the metal–semiconductor barrier so that this
paper would have ρc = 0, yielding LT2 = 0 in the conventional
transmission line model [32]. The transmission line model does
not include the effect of fringing fields studied in this paper.

Since the distance between a and a′ is always 0.44h as h → 0
[cf. eqs. (6) and (9)], and Figs. 4 and 6 are identical for both
cylindrical and Cartesian a-spot shown in Fig. 1, we might
extend the theory to an a-spot of an arbitrary shape in the
h → 0 limit. We propose that for the model shown in Fig. 2(a)
in particular, the spreading resistance Rs defined in (2) would
assume the general form

Rs =
( ρ

L

) 2�n2
π

, h → 0 (12)

where L is the circumference of the a-spot of an arbitrary shape,
and Rbulk is the bulk resistance of the thin film exterior to
this generalized a-spot. For a circular a-spot of radius a, L =
2πa, and (12) reproduces (10). For an a-spot in the Cartesian
geometry, L = 2W [the factor of two to account for both edges
A and B in Fig. 2(a)], and (12) reproduces (11). Clearly, there
will be limitations to the validity of (12), particularly if the
a-spot shape is highly irregular, e.g., where the radius of
curvature s of the a-spot significantly varies in magnitude and
sign along the circumference. For a-spots that do not deviate
too strongly from circular or rectangular geometry, and from
our comments following (11), (12) is expected to be valid if
h � minimum s.

Finally, Timsit pointed out that the dc spreading resistance in
a thin film is comparable to the spreading resistance for high-
frequency ac current in a bulk solid where the current flow is
limited to the skin depth [24], if the thickness of the equivalent
thin film is identified as the skin depth at the relevant frequency,
i.e., h = δ. Along this line, we speculate that the same finite
limits of Rs = 2.77 for the Cartesian case and Rs = 0.28 for
the cylindrical case would apply to the ac case as the skin depth
δ → 0. In fact, Fig. 9 of [24] for the 1-GHz curve is about 0.3 of
that for the cylindrical dc curve, for all constriction diameters
shown in that figure. If the frequency further increases, we
expect the ratio would be ∼0.28. Likewise, we conjecture that
Fig. 10 of [24] would converge to the final value of ∼0.28 as
a/δ → ∞. If our conjecture is correct, the limiting value of
spreading resistance would give rise to an important component
of contact resistance at high signal frequencies.



1940 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 7, JULY 2012

REFERENCES

[1] W. J. Greig, Integrated Circuit Packaging, Assembly and Interconnections.
New York: Springer-Verlag, 2007.

[2] P. M. Hall, “Resistance calculations for thin film patterns,” Thin Solid
Films, vol. 1, no. 4, pp. 277–295, Jan. 1968.

[3] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon
nanotubes—The route toward applications,” Science, vol. 297, no. 5582,
pp. 787–792, Aug. 2002.

[4] M. B. Read, J. H. Lang, A. H. Slocum, and R. Martens, “Contact resis-
tance in flat thin films,” in Proc. 55th IEEE Holm Conf. Elect. Contacts,
2009, pp. 303–309.

[5] M. R. Gomez, J. C. Zier, R. M. Gilgenbach, D. M. French, W. Tang, and
Y. Y. Lau, “Effect of soft metal gasket contacts on contact resistance,
energy deposition, and plasma expansion profile in a wire array Z pinch,”
Rev. Sci. Instrum., vol. 79, no. 9, p. 093512, Sep. 2008.

[6] R. M. Gilgenbach, Y. Y. Lau, H. McDowell, K. L. Cartwright, and
T. A. Spencer, “Crossed-field devices,” in Modern Microwave and
Millimeter Wave Power Electronics, R. J. Barker, N. C. Luhmann,
J. H. Booske, and G. S. Nusinovich, Eds. Piscataway, NJ: IEEE Press,
2004, ch. 6.

[7] P. Zhang, Y. Y. Lau, M. Franzi, and R. M. Gilgenbach, “Multipactor
susceptibility on a dielectric with a bias dc electric field and a back-
ground gas,” Phys. Plasmas, vol. 18, no. 5, pp. 053508-1–053508-8,
May 2011.

[8] N. M. Jordan, Y. Y. Lau, D. M. French, R. M. Gilgenbach, and
P. Pengvanich, “Electric field and electron orbits near a triple point,” J.
Appl. Phys., vol. 102, no. 3, pp. 033301-1–033301-10, Aug. 2007.

[9] R. Miller, Y. Y. Lau, and J. H. Booske, “Electric field distribution on
knife-edge field emitters,” Appl. Phys. Lett., vol. 91, no. 7, pp. 074105-
1–074105-3, Aug. 2007.

[10] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of radio-frequency
absorption and electric and magnetic field enhancements due to surface
roughness,” J. Appl. Phys., vol. 105, no. 11, pp. 114908-1–114908-9,
Jun. 2009.

[11] R. Holm, Electric Contact, 4th ed. Berlin, Germany: Springer-Verlag,
1967.

[12] R. S. Timsit, “Electrical contact resistance: Fundamental principles,” in
Electrical Contacts: Principles and Applications, P. G. Slade, Ed. New
York: Marcel Dekker, 1999, p. 1.

[13] A. M. Rosenfeld and R. S. Timsit, “The potential distribution in a con-
stricted cylinder: An exact solution,” Quart Appl. Math., vol. 39, pp. 405–
417, Oct. 1981.

[14] R. S. Timsit, “Electrical contact resistance: Properties of stationary
interfaces,” IEEE Trans. Compon. Packag. Technol., vol. 22, no. 1, pp. 85–
98, Mar. 1999.

[15] M. Nakamura, “Constriction resistance of conducting spots by the bound-
ary element method,” IEEE Trans. Compon., Hybrids, Manuf. Technol.,
vol. 16, no. 3, pp. 339–343, May 1993.

[16] Y. H. Jang, J. R. Barber, and S. J. Hu, “Electrical conductance between
conductors with dissimilar temperature-dependent material properties,”
J. Phys. D, Appl. Phys., vol. 31, no. 22, p. 3197, Nov. 1998.

[17] J. L. Carbonero, G. Morin, and B. Cabon, “Comparison between
beryllium-copper and tungsten high frequency air coplanar probes,”
IEEE Trans. Microw. Theory Tech., vol. 43, no. 12, pp. 2786–2793,
Dec. 1995.

[18] Y. Y. Lau and W. Tang, “A higher dimensional theory of electrical contact
resistance,” J. Appl. Phys., vol. 105, no. 12, pp. 124902-1–124902-10,
Jun. 2009.

[19] M. R. Gomez, D. M. French, W. Tang, P. Zhang, Y. Y. Lau, and
R. M. Gilgenbach, “Experimental validation of a higher dimensional
theory of electrical contact resistance,” Appl. Phys. Lett., vol. 95, no. 7,
pp. 072103-1–072103-3, Aug. 2009.

[20] P. Zhang and Y. Y. Lau, “Scaling laws for electrical contact resistance
with dissimilar materials,” J. Appl. Phys., vol. 108, no. 4, pp. 044914-1–
044914-9, Aug. 2010.

[21] P. Zhang, Y. Y. Lau, W. Tang, M. R. Gomez, D. M. French, J. C. Zier,
and R. M. Gilgenbach, “Contact resistance with dissimilar materials: bulk
contacts and thin film contacts,” presented at the Proc. 57th IEEE Holm
Conf. Electrical Contacts, Minneapolis, MN, 2011, Paper 2.2.

[22] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Minimization of thin film
contact resistance,” Appl. Phys. Lett., vol. 97, no. 20, pp. 204103-1–
204103-3, Nov. 2010.

[23] P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Thin film contact resistance
with dissimilar materials,” J. Appl. Phys., vol. 109, no. 12, pp. 124910-1–
124910-10, Jun. 2011.

[24] R. S. Timsit, “Constriction resistance of thin-film contacts,” IEEE Trans.
Compon. Packag. Technol., vol. 33, no. 3, pp. 636–642, Sep. 2010.

[25] S. Kristiansson, F. Ingvarson, and K. O. Jeppson, “Compact spreading
resistance model for rectangular contacts on uniform and epitaxial sub-
strates,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2531–2536,
Sep. 2007.

[26] A. Nussbaum, “Capacitance and spreading resistance of a stripe line,”
Solid State Electron., vol. 38, no. 6, pp. 1253–1256, Jun. 1995.

[27] M. S. Leong, S. C. Choo, and L. S. Tan, “The role of source boundary con-
dition in spreading resistance calculations,” Solid State Electron., vol. 21,
no. 7, pp. 933–941, Jul. 1978.

[28] R. H. Cox and H. Strack, “Ohmic contacts for GaAs devices,” Solid State
Electron., vol. 10, no. 12, pp. 1213–1218, Dec. 1967.

[29] B. Gelmont and M. Shur, “Spreading resistance of a round ohmic contact,”
Solid State Electron., vol. 36, no. 2, pp. 143–146, Feb. 1993.

[30] M. W. Denhoff, “An accurate calculation of spreading Resistance,”
J. Phys. D, Appl. Phys., vol. 39, no. 9, pp. 1761–1765, May 2006.

[31] J. A. Greenwood and J. B. P. Williamson, “Electrical conduction in
solids. II. Theory of temperature-dependent conductors,” Proc. R. Soc.
A, vol. 246, no. 1244, pp. 13–31, Jul. 1958.

[32] D. K. Schroder, Semiconductor Material and Device Characterization.,
2nd ed. New York: Wiley, 1998, p. 149.

[33] H. H. Berger, “Models for contacts to planar devices,” Solid State
Electron., vol. 15, pp. 145–158, 1972.

Peng Zhang (S’07) is a graduate student in Nuclear
Engineering and Radiological Sciences at the Uni-
versity of Michigan. He has 12 refereed publications
in surface sciences and plasmas. He received the
IEEE Nuclear and Plasma Sciences Graduate Schol-
arship Award.

Y. Y. Lau (M’98–SM’06–F’08) received all degrees
(SB-SM-PhD) in EE from MIT. He is currently
Professor at the University of Michigan, specialized
in RF sources, heating, and discharge. A Fellow of
IEEE and of American Physical Society, he received
the IEEE Plasma Science and Applications Award.

Roland S. Timsit received the Ph.D degree in
physics in 1970 at the University of Toronto. He was
Chief Technologist at Tyco Electronics. He received
the IEEE Ragnar Holm Scientific Award and four
international awards relating to electrical contacts.
He is currently President of Timron Scientific Con-
sulting Inc., an electronic connector design company.


