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Constriction Resistance and Current Crowding in
Vertical Thin Film Contact
Peng Zhang, Member, IEEE, and Y. Y. Lau, Fellow, IEEE

Abstract—The constriction resistance and the current flow
pattern are calculated analytically in a vertical thin film contact
in which the thin film base is an equipotential surface. Both
Cartesian and cylindrical thin film contacts are studied. The re-
sistivities and the geometric dimensions in the individual contact
members may assume arbitrary values. General scaling laws are
constructed for the constriction resistance for arbitrary resistivity
ratios and geometric aspect ratios. The analytic solutions are
validated using a simulation code. Current crowding at the edges
is displayed. In the limit of small film thickness, we show that
current crowding in the vertical contact is far less serious than the
current crowding in the horizontal contact. The data show that
the normalized constriction resistance depends predominantly on
the geometry of the thin film, but is relatively insensitive to the
height and to the resistivity of the member with which the thin
film is in contact.

Index Terms—Contact resistance, current crowding, spreading
resistance, thin film.

I. Introduction

Thin film contacts, in which a thin conducting film consti-
tutes at least one of the contacting members, are basic circuit
structures in modern electronic devices. They are widely used
in micro-electronic and micro-electromechanical systems, and
in semiconductor material and device characterization [1], [2].
In miniaturization of electronics, current crowding and Joule
heating are important issues [3]–[5].

We consider two basic types of thin film contact: the
vertical type [Fig. 1(a)] and the horizontal type [Fig. 1(b)].
In the vertical contact [Fig. 1(a)], the thin film base AB
is an equipotential; the current flow is orthogonal to AB,
but is tangential to the thin film edges BC and AH. In the
horizontal contact [Fig. 1(b)], the thin film edges BC and
AH are equipotentials. The current flow is orthogonal to BC
and AH, but is tangential to the thin film base AB. As a
result, the constriction resistance (also known as the spreading
resistance), as well as current crowding at the edges G and D
for these two types of thin film contacts are very different.
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Fig. 1. Two basic types of thin film contact: (a) vertical type, and
(b) horizontal type, with dissimilar materials for both Cartesian and cylindrical
geometries. For the cylindrical case, the z-axis is the axis of rotation. This
paper focuses mainly on the vertical type (a); the horizontal type (b) was
solved in [20].

We assume that there are only two contact members, denoted
as Region I and Region II, between the electrodes [Figs. 1(a)
and (b)]. The interface GD is perfectly smooth and does not
contain a resistive sheet.

In this paper, we focus mainly on the vertical contact
shown in Fig. 1(a), and provide a comprehensive study of the
constriction resistance and the current flows in regions I and II.
We point out the marked difference in current crowding at the
corners (edges) D and G between vertical contact [Fig. 1(a)]
and horizontal contact [Fig. 1(b)]. Without loss of generality,
we assume that the top terminal EF is grounded.

The vertical thin film contact has been studied by several
authors [6]–[12]. In particular, Hall [6] studied the Cartesian
geometry using conformal mapping. Denhoff [12] studied the
constriction resistance of a round thin film contact by solving
Laplace equation using analytic, numerical, and finite element
methods. These studies are restricted to the highly special
cases of Fig. 1a: assuming either equal resistivity, ρ1 = ρ2 [6],
or h1 → 0 [7–9], [12]. We relax these two assumptions in this
paper.
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Fig. 2. Rc [see (A7)] for Cartesian case as a function of b/a, for ρ1/ρ2 = 1,
a/h2 = 0.1, 1, and 10. For each a/h2, the three curves are for h1/a = 10, 0.1, and
0.001 (top to bottom). The symbols represent MAXWELL 2-D simulation.

Fig. 3. R̄c for Cartesian case as a function of a/h2, in the limit of h1/a → ∞,
for b/a = 30, 10, and 5. For each b/a, the three solid curves are for ρ1/ρ2 = 100,
1, and 0.01 (top to bottom), representing the results from exact calculations
[(A7)]. The dotted lines represent (2), and the symbols represent MAXWELL
2-D simulation.

The horizontal thin film contact has also been studied ex-
tensively, in both Cartesian [1], [2], [13]–[17] and cylindrical
geometry [15]–[19]. Most recently, we treated the 3-terminal
horizontal thin film contact in great detail [20], with arbitrary
resistivities and geometric dimensions in the individual con-
tact members, as well as arbitrary (unequal) voltages at the
terminals BC and AH [Fig. 1(b)]. We found severe current
crowding at the edges D and G, for ρ1 = 0, when the thin film
thickness h2 is small [17]. There is a great variety of current
crowding in 3-terminal horizontal thin film contact [20].

In both Cartesian and cylindrical geometries [Fig. 1(a)], the
resistivities ρ1 and ρ2, and the geometric dimensions a, b,
h1, and h2 may assume arbitrary values. Thus, this paper is
applicable to both thin and thick films, and Region I may
represent a resistive thin film by letting h1 small and ρ1 large.
Following the same procedure in studying the bulk contact
resistance [21], [22] and the horizontal thin film contacts [15],
[20], we analytically solve Laplace equation in Regions I and
II of Fig. 1(a), then match the boundary conditions at the
contact interface. The potential profile and the constriction
resistance are calculated from this exact formulation.

In Section II, we consider the Cartesian vertical thin film
contact. We present a formula for the constriction resis-

tance and illustrate the current pattern. We compare our
results to those obtained from the MAXWELL 2-D finite
element code [23]. In Section III, we consider the cylindri-
cal vertical thin film which is qualitatively similar to the
Cartesian solution of Section II. Concluding remarks are
given in Section IV. Only the major results will be pre-
sented in the main text. Their derivations are given in the
appendices.

II. Cartesian Thin Film Vertical Contact

Since the geometry [Fig. 1(a)] is symmetrical about the
vertical z-axis, so also are the current flow patterns and the
field lines. The field lines are normal to the two terminals AB
and EF. The total current is I = V 0/R, where R is the resistance
between these two terminals, which we find to be

R = ρ1
h1

2a × W
+

ρ2

4πW
Rc(

a

b
,
h1

a
,

a

h2
,
ρ1

ρ2
) + ρ2

h2

2b × W
, (1)

where W denotes the channel width in the third ignorable
dimension that is perpendicular to the paper. In (1), the first
term represents the bulk resistance of Region I. The third
term represents the bulk resistance of Region II. The second
term represents the remaining constriction (spreading) resis-
tance, Rc, and is expressed as Rc = ρ2

4πW
Rc for the Cartesian

case. The normalized Rc depends on the aspect ratios a/b, h1/a,
and a/h2, and on the resistivity ratio ρ1/ρ2, as explicitly shown
in (1). The exact expression for Rc is derived in Appendix
A (A7).

If we use the exact expression (A7) in the numerical
evaluation of Rc, we call the result the “exact theory”. [In the
infinite sum in (A7), we use 104 terms; we also use 104 terms
in the infinite sum in (A3b) to solve for Bn, n = 1, 2, .., 104.]
From the vast amount of data that we collected from the exact
theory at various combinations of h1, h2, ρ1, ρ2, a, and b, we
attempted to construct simple fitting formulas for Rc so that
the values of Rc, or the bounds of Rc, may be easily obtained
without solving the infinite matrix Eq. (A3b). The bounds on
Rc are identical to the corresponding asymptotic limits of Rc,
which in some cases (but not all) were solved in the literature
by other means. Thus, the numerical fitting formulas, given
for instance in (2), (3), (5), and (6), are synthesized from a
judicious combination of these asymptotic limits, and from the
numerical data generated from the exact theory. We validated
the exact theory and the synthesized fitting formulas with
MAXWELL 2-D simulation codes in Figs. 2, 3, 4, 6, 7, and
8. Similar approaches were used in our recent treatment of the
horizontal thin film contact [20].

The exact theory of Rc (A7) is plotted in Fig. 2 as a function
of b/a, for ρ1/ρ2 = 1 with various a/h2 and h1/a. For a given
a/h2, Rc increases as b/a increases. For a/h2 on the order of
1 or larger, Rc approaches almost a constant as b/a becomes
large. For a given b/a, Rc decreases as a/h2 increases. The
effect of h1/a on Rc is minor. Rc increases slightly as h1/a
increases. The effect of h1/a becomes even less significant as
a/h2 increases.

Since Rc is relatively insensitive to h1/a, in Fig. 3 we plot Rc

as a function of a/h2 at various values of b/a and ρ1/ρ2, in the
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limit of h1/a → ∞. When a/h2 � 1, Rc approaches a constant
value (independent of h2) for a given b/a. This is due to the fact
that if both h2 and h1 become much larger than a, the structure
in Fig. 1(a) will become a semi-infinite constriction channel,
whose constriction resistance is independent of h1 and h2,
which was studied in detail in [22]. When a/h2>1, Rc decreases
as a/h2 increases. As a/h2 → ∞, Rc = 2π

(
h2
a

− h2
b

) → 0,
which is in sharp contrast to the behavior of the horizontal
Cartesian thin film contact studied in [15]–[17], [20], where
the current flows parallel to the thin film bottom boundary, and
Rc (which has a different definition for the horizontal contact
[17], [20]) approaches a finite constant of 2.77 as a/h2 → ∞.

By comparing the data calculated analytically from the exact
theory (A7), with the published scalings for some limiting
cases [6], [21], [22], [24], we synthesized an accurate, ana-
lytical scaling law for the constriction resistance of a general
vertical thin film contact, in the h1/a → ∞ limit,

Rc

(
a

b
,

a

h2
,
ρ1

ρ2

)∣∣∣∣
h1/a→∞

=
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⎩
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+ 0.2274 ×
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(
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1 + 0.2274

q(b/a) × ρ1−ρ2
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)
, a

h2
> tan

(
π
2

b
a

)
,

(2)
Rc0 (b/a) = 4 ln(2b/πa) + 4 ln(π/2) × f (b/a),
f (b/a) = 0.03250(a/b) + 1.06568(a/b)2 − 0.24829(a/b)3

+0.21511(a/b)4,

g(b/a) = 1 − 1.2281(a/b)2 + 0.1223(a/b)4 − 0.2711(a/b)6

+0.3769(a/b)8,

p(a/h2) = 2π(h2/a) − 4(h2/a) tan−1(h2/a)
+2 ln

[
(h2/a)2 + 1

] − 2π(h2/b),

q(b/a) = 2
(

b
a

+ a
b

)
ln

(
1+a/b

1−a/b

)
+ 4 ln

(
b/a−a/b

4

)
. (3a-3e)

Equation (2) is also plotted in Fig. 3, showing excellent
agreement with the exact theory (A7) for arbitrary value of a,
b(>a), h2, ρ1, and ρ2, in the limit of h1/a→ ∞.

In (3), Rc0 (b/a), f (b/a), and g(b/a) are derived by Lau and
Tang [21], and by Zhang and Lau [(5) and (6) of [22]],1

p(a/h2) is derived by Hall [(45) of [6], assuming ρ1/ρ2 = 1
and h1/a → ∞], q(b/a) is derived by both Hall [(42) of [6],
assuming ρ1/ρ2 = 1, h1/a → ∞, and h2/a → ∞] and Smythe
[24]. The breakpoint in (2), a

h2
= tan

(
πa
2b

)
, was also stated by

Hall [(46) of [6]]. At a
h2

= tan
(

πa
2b

)
, there is a discontinuity

between the two expressions in (2). This discontinuity at the
breakpoint is also seen in the dotted curves in Fig. 3 which
plot (2). The size of this step discontinuity is always less than
2% of the exact value of Rc [6].

Figure 4(a) shows the exact theory for Rc (A7) as a function
of ρ1/ρ2, for various a/h2 and h1/a. Figure 4(b) shows the
exact theory for Rc (A7) as a function of h1/a, for various
a/h2 and ρ1/ρ2. In both Figs. 4(a) and (b), we fixed b/a = 30.
In general, as either ρ1/ρ2 or h1/a increases, Rc increases. It
is important to recognize from Figs. 2–4 that dependence of

1An anonymous referee suggested alternate, elegant fitting formulas, f (x) =
3/[(2x-1)(2+x)], g(x) = (4/x2) (x2−1)2/(4x2−3) where x = b/a (> 1). While
these fitting formulas for f (x) and g(x) are not as accurate as (3b) and (3c),
they may be used for most practical purposes. We wish to thank this referee
for his/her careful reading of the manuscript.

Fig. 4. (a) Rc for Cartesian case [see (A7)] as a function of ρ1/ρ2, for
a/h2 = 0.1, 1, and 10. For each a/h2, the five solid curves are for h1/a = 10,
1, 0.1, 0.01, and 0.001 (top to bottom), and (b) Rc as a function of h1/a, for
a/h2 = 0.1, 1, and 10. For each a/h2, the five solid curves are for ρ1/ρ2 = 100,
10, 1, 0.1, and 0.01 (top to bottom). We fixed b/a = 30 in all calculations.
The dashed lines represent the bounds calculated from (2): for each a/h2 in
(a) and (b), the upper dashed line is calculated from (2) by setting ρ1/ρ2 →
∞; the lower dashed line is calculated from (2) by setting ρ1/ρ2 → 0. Note
that ρ1/ρ2 → 0 is equivalent to h1/a → 0, because in these two limits, the
top terminal EF in Fig. 1a is in effect placed directly at the interface DG. The
symbols represent MAXWELL 2-D simulation.

Rc on h1/a and on ρ1/ρ2 is not significant, and that the major
dependence of Rc is on a/h2 and on b/a. Thus, for a given
a/h2 and b/a in Figs. 3 and 4, the bounds of the curves are
fairly accurately predicted by (2), which are plotted as dashed
lines, for all values of h1/a and ρ1/ρ2.

The field line equation, y = y(z), may be numerically in-
tegrated from the first order ordinary differential equation
dy/dz = Ey/Ez = (∂�/∂y)/(∂�/∂z) where � is given by
(A1). The field lines in the right half of the thin film structure
[Fig. 1(a)] are shown in Fig. 5 for the special case of ρ1/ρ2 = 1,
and h1/a = 0.01 with various a/h2. We set b/a = 30 in all
calculations in Fig. 5. Note that the variation of a/h2 in Fig. 5
may be interpreted this way: a, b, and h1 are held fixed, h2

decreases, i.e. h2 = 5a, a, and 0.2a, from Fig. 5(a) to 5(c).
(Similar interpretation applies to other figures.) It is clear that
as a/h2 increases, the spreading of the field lines (also the



86 IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, VOL. 1, NO. 3, MARCH 2013

Fig. 5. Field lines calculated from (A1) for the right half of Cartesian
thin film contact (Fig. 1a), for the special case of ρ1/ρ2 = 1 and h1/a = 0.01
with various a/h2. We fixed b/a = 30. The field line distribution is relatively
insensitive to h1/a or ρ1/ρ2 (not shown), as compared to the effect of a/h2.

Fig. 6. Rc [see (B6)] for cylindrical case as a function of b/a, for ρ1/ρ2 = 1,
a/h2 = 0.1, 1, and 10. For each a/h2, the three curves are for h1/a = 10, 0.1, and
0.001 (top to bottom). The symbols represent MAXWELL 2-D simulation.

current flow lines) in Region II becomes less significant. This
explains the decrease in Rc as a/h2 increases, as shown in
Fig. 3. In the limit of h2 → 0, there will be little spreading
of field lines (little current crowding) at the edge of the
constriction, leading to zero constriction resistance (Fig. 3),
in sharp contrast to the horizontal contact [15], [17], [20].
Note from Fig. 5 that the field lines in Region I are almost
straight, and are fairly uniformly spaced across the interface in
all the cases, implying minimal enhanced heating at the edges
G and D in a vertical contact [Fig. 1(a)]. We also found that

Fig. 7. R̄c for cylindrical case as a function of a/h2, in the limit of h1/a →
∞, for b/a = 30, with ρ1/ρ2 = 100, 1, and 0.01 (top to bottom). The solid lines
represent the exact calculations [(B6)], symbols represent MAXWELL 2-D
simulation, and the dashed lines represent (5).

as either h1/a or ρ1/ρ2 increases, the spreading of the field
lines in Region II slightly increases (not shown). The field
line distribution is relatively insensitive to h1/a or ρ1/ρ2, as
compared to the effect of a/h2.

III. Circular Thin Film Vertical Contact

For the circular thin film vertical contact [Fig. 1(a)], the
z-axis is the axis of rotation. The total current is I = V 0/R,
where R is the resistance between the two terminals AB and
EF, given by

R =
ρ1h1

πa2
+

ρ2

4a
Rc

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)
+

ρ2h2

πb2
. (4)

In (4), the first and third terms represent the bulk resistance
of Region I and II, respectively. The second term represents
the remaining constriction resistance, Rc, and is expressed as
Rc = ρ2

4a
Rc for the circular case. The normalized Rc depends

on the aspect ratios a/b, h1/a and a/h2, and on the resistivity
ratio ρ1/ρ2, as explicitly shown in (4). The exact expression
for Rc is derived in Appendix B (B6).

The exact theory of Rc (B6) is plotted in Fig. 6 as a function
of b/a, for ρ1/ρ2 = 1 with various h1/a and a/h2. For a given
a/h2, Rc increases as b/a increases. However, Rc becomes
almost constant for large b/a, independent of the value of a/h2,
which is different from the Cartesian case in Fig. 2, where
Rc increases logarithmically with b/a if a/h2 is small [(2a)
and (3a)]. For a given b/a, Rc decreases as a/h2 increases. Rc

increases only slightly as h1/a increases. The effect of h1/a
becomes even less significant as a/h2 increases (Fig. 6).

In Fig. 7, we plot Rc as a function of a/h2 for various
values of ρ1/ρ2, in the limit of h1/a → ∞. As noted above,
Rc is independent of b for large b/a; we set b/a = 30 for
the calculation in Fig. 7. When a/h2 � 1, Rc approaches
a constant value (independent of h2) for a given b/a. This
is due to the fact that if both h2 and h1 become much
larger than a, the structure in Fig. 1a will become a semi-
infinite constriction channel, whose constriction resistance is
independent of h1 and h2, which was studied in detail in [22].
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Fig. 8. (a) Rc for cylindrical case [see (B6)] as a function of ρ1/ρ2, for
a/h2 = 0.1, 1, and 10. For each a/h2, the five solid curves are for h1/a = 10,
1, 0.1, 0.01, and 0.001 (top to bottom), and (b) Rc as a function of h1/a, for
a/h2 = 0.1, 1, and 10. For each a/h2, the five solid curves are for ρ1/ρ2 = 100,
10, 1, 0.1, and 0.01 (top to bottom). We fixed b/a = 30 in all calculations.
The dashed lines represent the bounds calculated from (5): for each a/h2 in
(a) and (b), the upper dashed line is calculated from (5) by setting ρ1/ρ2 →
∞; the lower dashed line is calculated from (5) by setting ρ1/ρ2 → 0. Note
that ρ1/ρ2 → 0 is equivalent to h1/a → 0, because in these two limits, the
top terminal EF in Fig. 1a is in effect placed directly at the interface DG. The
symbols represent MAXWELL 2-D simulation.

When a/h2 >1, Rc decreases as a/h2 increases. As a/h2 →
∞, Rc ∼ h2/a → 0. This is in sharp contrast to the behavior
of the horizontal cylindrical thin film contact studied in [15]–
[17], [20], in which the current flows parallel to the thin film
bottom boundary, and Rc (which has a different definition for
the horizontal contact [17], [20]) approaches a finite constant
of 0.28 as a/h2 → ∞.

By comparing the data calculated from the exact theory (B6)
with the published scalings for some limiting cases [12], [22],
[25], we synthesized an accurate, analytical scaling law for
the normalized constriction resistance of a general cylindrical
vertical thin film contact, in the h1/a → ∞ limit, given by Eqs.
(5) and (6) at the bottom of this page, where � = 32/3π2 −
1 = 0.08076. Equation (5) is also plotted in Fig. 7, showing
excellent agreement with the exact theory (B6) for arbitrary
value of a, b (>a), h2, ρ1, and ρ2, in the limit of h1/a→ ∞.

In (6), Rc0 (b/a) is synthesized by Timsit [25], g(b/a) is
derived by us [(3) of [22]], and p(a/h2) is from Denhoff [(26)
and (28) of [12]]. At the breakpoint, a

h2
= 1.8 a

b
or a

h2
= 1

1−(a/b)2 ,
there is a discontinuity between the two expressions in (5). The
size of this step discontinuity is within 2% of the exact value
of Rc (B6) in the worst case.

Figure 8(a) shows the exact theory for Rc (B6) as a function
of ρ1/ρ2, for various a/h2 and h1/a. Figure 8(b) shows the
exact theory for Rc (B6) as a function of h1/a, for various a/h2

and ρ1/ρ2. Spot checks by MAXWELL 2-D code [23] are also
shown in Fig. 8. In general, as either h1/a or ρ1/ρ2 increases,
Rc increases. It is important to recognize from Figs. 6–8 that
the dependence of Rc on h1/a and ρ1/ρ2 is not significant, and
that the major dependence of Rc is on b/a and on a/h2, similar
to the Cartesian case in Section II. Thus, for a given a/h2 in
Fig. 8, the bounds of the curves are fairly accurately predicted
by (5), which are plotted as dashed lines.

The field lines for the cylindrical case (not shown) are very
similar to those in Fig. 5 for the Cartesian case. In the limit
of h2 → 0, there will be little spreading of field lines (little
current crowding) at the edge of the constriction, leading to
zero constriction resistance (Fig. 7), in sharp contrast to the
horizontal contact [17], [20].

Rc
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a
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,
ρ1

ρ2

)∣∣∣∣
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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2 ×
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)
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(
b
a

)
,
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[
a/h2 ≤ 1.8a/b if b/a ≥ 4.37, or

a/h2 ≤ [
1 − (a/b)2

]−1
if b/a < 4.37

]
;[

p
(

a
h2

)
− 4

π

(
a
b

)2 h2
a

]
×

(
1 + �

R̄c0(b/a) × ρ1
ρ1+ρ2

)
, otherwise,

(5)

R̄c0 (b/a) = 1 − 1.41581(a/b) + 0.06322(a/b)2 + 0.15261(a/b)3 + 0.19998(a/b)4,

g(b/a) = 1 − 0.3243(a/b)2 − 0.6124(a/b)4 − 1.3594(a/b)6 + 1.2961(a/b)8,

p(a/h2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1 + 0.441271 (a/h2) + 0.194720 (a/h2)2 − 0.009732 (a/h2)3

−0.046505 (a/h2)4 + 0.002110 (a/h2)5 + 0.052204 (a/h2)6

−0.011044 (a/h2)7]−1, 0 < a/h2 ≤ 0.4;
4 × [0 + 0.31338(h2/a) − 0.25134(h2/a)2 + 0.12512(h2/a)3

−0.03436(h2/a)4 + 0.003908(h2/a)5], 0.4 < a/h2 < ∞,

(6a-6c)
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IV. Concluding Remarks

This paper presented an exact solution for the constric-
tion resistance in a vertical thin film contact with dissimi-
lar materials, for both Cartesian and cylindrical geometries.
The model assumed arbitrary geometric aspect ratios and
arbitrary resistivities in the individual contact members. The
constriction resistance was calculated analytically, and spot-
checked against the MAXWELL 2-D code. The current flow
patterns from the exact theory were displayed. Scaling laws
for, and bounds on, the constriction resistance were presented
for arbitrary values of h1, h2, ρ1, ρ2, a, and b (>a) [Fig. 1(a)].

We found that the normalized constriction resistance Rc

depended predominantly on b/a and on h2/a, i.e., on the
geometry of Region II; but was relatively insensitive to h1/a,
and to ρ1/ρ2, i.e., insensitive to the geometry or resistivity of
Region I [Fig. 1(a)]. We also found that in the limit of small
film thickness (h2 → 0), there was hardly any current crowding
in the vertical contact represented in Fig. 1(a). The current was
distributed quite uniformly across the interface GD, implying
minimal enhanced heating at the edges G and D in Fig. 1(a).
This was in sharp contrast to a horizontal thin film contact
[Fig. 1(b)], where the current that crosses the interface GD
was highly concentrated near the edges G and D. In fact, at
least half of the current flew within a distance of 0.44 h2 (h2

→ 0 [17]) of the two edges G and D in Fig. 1(b), suggesting
severe local heating there for the horizontal thin film contact.

Appendix A

General Solution to the Cartesian Vertical Contact [Fig. 1(a)]

The formulation follows that of [15], [20], and [22]. Refer-
ring to Fig. 1(a), EF is grounded, and AB is biased with a
voltage of + V 0. The solutions to Laplace’s equation are,

�+(y, z) = A0(z − h1) +
∞∑
n=1

An cos
(

nπy

a

)
sinh

(
nπ z−h1

a

)
,

0 < z < h1, |y| ∈ (0, a),

�−(y, z) = V0 + B0(z + h2) +
∞∑
n=1

Bn cos
(

nπy

b

)
sinh

(
nπ z+h2

b

)
,

− h2 < z < 0, |y| ∈ (0, b), (A1)

where �+ and �− are the electrical potential in the regions
I and II respectively, and An and Bn are the coefficients that
need to be determined.

At the interface z = 0, from the continuity of electrical
potential and current density, we have the following boundary
conditions

�+ = �−, z = 0, |y| ∈ (0, a) (A2a)

1

ρ1

∂�+

∂z
=

1

ρ2

∂�−
∂z

, z = 0, |y| ∈ (0, a), (A2b)

∂�−
∂z

= 0, z = 0, |y| ∈ (a, b) (A2c)

From (A1) and (A2a), eliminating coefficient An in favor of
Bn, we have

−An sinh

(
nπ

h1

a

)
=

∞∑
m=1

gmnBm sinh

(
mπ

h2

b

)
, (A3a)

ρ1

ρ2
nBn cosh

(
nπ

h2

b

)
+

∞∑
m=1

γnmBm sinh

(
mπh2

b

)

=
2

π

sin (nπa/b)

nπa/b
, n = 1, 2, 3... (A3b)

where

γnm = γmn =
∞∑
l=1

lgnlgml coth

(
lπh1

a

)
,

gmn =
2

a

a∫
0

dy cos
(mπy

b

)
cos

(nπy

a

)
.

(A4)

In deriving (A3b), we have assumed that aA0 = + 1. The
infinite matrix in (A3b) can be solved directly for Bn with
convergence guaranteed [22], from which An follows in (A3a).

The total current from AB to EF is, [Fig. 1(a)]

I = 2W

∫ a

0

1

ρ1

∂�+

∂z

∣∣∣∣
z=0

dy =
2W

ρ1
, (A5)

where we have used (A1) and aA0 = + 1, and W is the width
in the third, ignorable dimension that is perpendicular to the
paper. The terminal voltage V 0 may be expressed in terms of
Bn as

V0 = −h1

a
−B0h2− 1

a

∞∑
n=1

Bn sinh

(
nπh2

b

)
sin (nπa/b)

nπa/b
(A6)

We found B0 = (ρ2/ρ1)/b, after taking ∂�−/∂z in (A1) and
using (A2b) and (A2c) in the resultant Fourier series.

The constriction resistance, Rc, is defined as the difference
between the resistance from AB to EF, R = V0/I, and the bulk
resistance, Ru = ρ1h1/2aW + ρ2h2/2bW ,

Rc ≡ ρ2
4πW

Rc = V0
I

− Ru,

R̄c = R̄c

(
a
b
, h1

a
, a

h2
, ρ1

ρ2

)
= 2π ρ1

ρ2

∞∑
n=1

Bn sinh
(

nπh2
b

) sin(nπa/b)
nπa/b

.

(A7)
Equation (A7) is the exact expression for the constriction

resistance of Cartesian vertical thin film contact [Fig. 1(a)] for
arbitrary values of a, b (b>a), h1, h2 and ρ1/ρ2. In (A7), Bn is
solved from (A3b). Equation (A7) appears in (1) of the main
text.
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Appendix B

General Solution to the Circular Vertical Contact [Fig. 1(a)]

The solutions to Laplace’s equation in cylindrical geometry
are [15], [20], [22],

�+(r, z) = A0(z − h1) +
∞∑
n=1

AnJ0 (αnr) sinh [αn(z − h1)],

0 < z < h1, r ∈ (0, a);

�−(r, z) = V0 + B0(z + h2) +
∞∑
n=1

BnJ0 (βnr) sinh [βn(z + h2)] ,

− h2 < z < 0, r ∈ (0, b), (B1)

where �+ and �− are the electrical potential in the regions
I and II, respectively, αn and βn satisfy J1(αna) = J1(βnb) = 0,
J0(x) and J1(x) are the Bessel functions of order zero and one
respectively, and An and Bn are the coefficients that need to
be determined.

At the interface z = 0, from the continuity of electrical
potential and current density, we have the following boundary
conditions:

�+ = �−, z = 0, r ∈ (0, a), (B2a)

1

ρ1

∂�+

∂z
=

1

ρ2

∂�−
∂z

, z = 0, r ∈ (0, a), (B2b)

∂�−
∂z

= 0, z = 0, r ∈ (a, b) (B2c)

From (B1) and (B2a), the coefficient An is expressed in
terms of Bn,

−A0h1 =
∞∑
n=1

Bn sinh (βnh2)
2J1 (βna)

βna
+ V0 + B0h2, (B3a)

− sinh(αnh1)An =
∞∑

m=1

Bm sinh (βmh2) gmn,

gmn =
2

a2J2
0 (αna)

a∫
0

rdrJ0 (αnr) J0 (βmr) , n ≥ 1. (B3b)

Combining (B2b), (B2c) and (B3b), we obtain

ρ1

ρ2

b

a
βnbJ2

0 (βnb) cosh(βnh2)Bn +
∞∑

m=1

γnmBm sinh (βmh2)

=
2J1 (βna)

βna
, n = 1, 2, 3..., (B4)

where

γnm = γmn =
∞∑
l=1

gnlgmlαlaJ2
0 (αla) coth (αlh1), (B5)

and gnl and gml is in the form of the last part in (B3b). In
deriving (B4), we have set aA0 = 1 for simplicity.

The total resistance from AB to EF is R = V 0/I , where I =
a∫

0

(
1
ρ1

∂�+
∂z

∣∣
z=0

)
2πrdr = πa/ρ1 is the total current from AB to

EF [Fig. 1(a)], and V 0 can be found from (B3a) with B0 =
(ρ2/ρ1) a/b2. This expression for B0 is obtained after taking
∂�−/∂z in (B1) and using (B2b) and (B2c) in the resultant
Fourier series.

The constriction resistance, Rc, is the difference between
the total resistance R and the bulk resistance Ru = ρ1h1/πa2 +
ρ2h2/πb2. We find

Rc ≡ ρ2

4a
Rc =

V0

I
− Ru,

R̄c

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)
=

8

π

ρ1

ρ2

∞∑
n=1

Bn sinh (βnh2)
J1 (βna)

βna
,

(B6)

which is the exact expression for the circular vertical thin film
constriction resistance with dissimilar materials for arbitrary
values of a, b (b>a), h1, h2 and ρ1/ρ2. In (B6), Bn is solved
from (B4). Equation (B6) appears in (4) of the main text.
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