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The Green’s function on a slow wave structure is constructed. The Green’s function includes all radial

modes, and for each radial mode, all space harmonics. We compare the analytic solution of the

frequency response on the slow wave structure with that obtained from a particle-in-cell code.

Favorable comparison is obtained when the first few lower order modes are resonantly excited. This

gives some confidence in the prediction of converting a pulse train into radiation using a slow wave

structure. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771678]

I. INTRODUCTION

High power RF radiation sources, whether narrow-band

or wide-band, typically require an electron beam. There are

substantial advantages if the radiation can be generated with-

out using an electron beam. Radiation generated using a non-

linear transmission line (NLTL) is one such approach.1–4

The key question on this type of beam-free radiation source

is the conversion of the NLTL’s output voltage pulses into

radiation. This paper addresses one aspect of this problem.

One way in which voltage pulses may be converted into

radiation is if they are designed to excite a slow wave struc-

ture (SWS).5 SWS readily converts an input voltage pulse

into radiation when a circuit mode is excited. An example is

the traveling wave tube (TWT).6 An external AC excitation

coupled to the slow wave structure would generate an elec-

tromagnetic wave or set of waves on the circuit, which could

then be coupled out as radiation. For a general temporal exci-

tation, the Green’s function for the SWS is of fundamental

interest.

In this paper, we shall not consider the explicit coupling

of the NLTL and the SWS. Instead, we consider how the

SWS would respond to an impulse excitation by constructing

the Green’s function. We also study the frequency response

using particle-in-cell simulation on a textbook example of

SWS. This textbook example of SWS7 serves to illustrate the

analytic theory and to show the structure of the Green’s func-

tion for a practical SWS geometry in general. Section II

describes the analytic formulation of the Green’s function

and the frequency response. In Sec. III, we compare the ana-

lytic formulation with the numerical code. Concluding

remarks are given in Sec. IV.

II. ANALYTIC THEORY

The model of the SWS is shown in Fig. 1. It has a perio-

dicity L in the y-direction, the vanes are infinitesimally thin,7

and the other geometrical dimensions are specified in Fig. 1.

We shall consider the excitation of two-dimensional (2D)

transverse magnetic waves whose nonzero components are Ex,

Ey, and Hz. To compare the analytic theory with particle-in-cell

simulation, we shall assume that this slow wave structure is

excited by a current source with only a Jy component. The

exact relation, r2H� ð1=c2Þ@2H=@t2 ¼ �r� J, which is

derived from the Maxwell equations, in frequency domain

reads8

r2Hzðx; yÞ þ
x2

c2
Hzðx; yÞ ¼ �

@Jyðx; yÞ
@x

: (1)

We are in particular interested in the excitation of the SWS

by a propagating ideal current sheet

Jyðx; y; tÞ ¼ Kdðx� aÞejxt�jby; (2)

where K, a, x and b are constants and d is the Dirac delta

function, and 0< a< b (Fig. 1). The Green’s function is the

SWS’s response to the impulse current excitation, applied

instantaneously at (x, y, t)¼ (a, a0, 0)

Jðx; tÞ ¼ ŷKdðx� aÞdðy� a0ÞdðtÞ

¼ ŷ

ð
db
ð

dxKdðx� aÞejxt�jbðy�a0Þ: (3)

Comparing Eq. (3) with Eq. (2), we see that the Green’s func-

tion is simply the superposition, over all x and b, of the solu-

tion to Eq. (1) subject to the plane wave excitation, Eq. (2).

The frequency domain solution to Eqs. (1) and (2) may

be expressed in terms of the vacuum eigenmode solution of

the slow wave structure as8

Hzðx; yÞ ¼
X1
m¼1

cmHzmðx; yÞ �
X1
m¼1

Am

x2 � x2
m

Hzmðx; yÞ; (4)

where the mth eigenfunction, Hzm, with the eigenfrequency

xm at the specified value of b satisfies the vacuum eigen-

mode equation

r2Hzmðx; yÞ þ
x2

m

c2
Hzmðx; yÞ ¼ 0: (5)

In writing the last form of Eq. (4), we explicitly show an infi-

nite response if the SWS, which is assumed to be lossless, is
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resonantly excited at the frequency x¼xm (see Fig. 3

below).

The Green’s function G(x,y,t), which is the solution Hz

in the SWS in response to the impulse current excitation,

Eq. (3), then reads

Gðx; y; tÞ ¼
ð

db
ð

dxejxt�jbðy�a0Þ
X1
m¼1

cmHzmðx; yÞ: (6)

We show in Appendix that Eq. (6) may be written in the gen-

eral form

Gðx; y; tÞ ¼
X1
m¼1

X1
l¼�1

ð2p=L

0

dbe�jðbþ2plLÞðy�a0Þ

� 2p sinðxmtÞ
xm

AmHzmðx; yÞ; (7)

where Am is defined in Eq. (4). The contribution from each

radial mode (m), and from each space harmonic (‘), to the

Green’s function is apparent in Eq. (7); it can also be calcu-

lated numerically. Note the general form of the Green’s

function, as displayed in Eq. (7), for a periodic SWS.

For the geometry of Fig. 1, xm ¼ xmðbÞ is the mth root

to D(x,b)¼ 0, where7,8

Dðx; bÞ � cotðxh=cÞ
xh=c

�
X1

n¼�1

sin hn

hn

� �2
cothðcnbÞ

cnh
(8)

and hn and cn are defined as

hn ¼ bnL=2; n ¼ 0;61;62;…

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n �
x2

c2

r
; n ¼ 0;61;62;…

bn ¼ bþ 2np=L; n ¼ 0;61;62;…

(9)

The cold tube dispersion relation xmðbÞ is schematically

shown in Fig. 2, which shows the first three “radial” modes

m¼ 1, 2, and 3 where m designates the mode number in the

x-direction in Fig. 1. These vacuum modes were studied in

detail in Ref. 8 and will not be repeated here. We follow

Ref. 8 to normalize the vacuum eigenmode according toÐ Ð
dxdyjHzmðx; yÞj2 ¼ 1, where the double integral is carried

over one period of the SWS shown in Fig. 1. For the ideal

current source given by Eq. (2), the complex amplitude, cm

in Eq. (4), of the mth excited mode reads

cm �
Am

x2 � x2
m

¼ �jxme0c2

x2 � x2
m

ðKLÞdm
sinhðcm0aÞ
sinhðcm0bÞ

� �
sin

xmh

c

� �
sinðbL=2Þ

bL=2
;

(10)

dm ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L e0

l0

� �
ðhm þ fmÞ

r ; (11)

hm ¼
ðd

b

dx cos2 xmðx� dÞ
c

� �
; (12)

fm ¼
X1

n¼�1

x2
m

c2jc2
mnj

gmn
sin2ðxmh=cÞ
jsinhðcmnbÞj2

sinðbnL=2Þ
bnL=2

� �2

; (13)

gmn ¼
ðb

0

dxjcosh2ðcmnxÞj; (14)

cmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n �
x2

m

c2

r
; n ¼ 0;61;62;… : (15)

Since the Green’s function, Eq. (7), depends on all modes

and is valid for arbitrary (x,y,t), its benchmark against numeri-

cal codes is infeasible. Thus, we resort to comparing the cru-

cial components that form the building block of the Green’s

function. Specifically, we calculate the frequency response,
~V1ðxÞ, of the voltage across a pair of vane tips when the exci-

tation current is given by Eq. (2) with a pre-assigned value b.

With the tip voltage written as V1ðtÞ ¼ ~V1ðxÞejxt, (Fig. 1) we

find

~V1ðxÞ ¼ �L
X1
m¼1

xm

x

� �
cmdm sin

xmh

c

� �
; (16)

to within a constant phase factor by the Floquet Theorem.7

The frequency response ~V1 as a function of x is plotted in

Fig. 3 for the following parameters: b/L¼ 6.0, h/L¼ 6.0,

a/L¼ 5.8, bL¼p/2. The divergence of ~V1 shown in Fig. 3

occurs at x¼xm, at which cm is singular in Eq. (10).

FIG. 2. Schematic drawing of the cold-tube dispersion relation xm(b). The

lowest three radial modes are shown.

FIG. 1. Slow wave structure, excited by an ideal current source.
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Since the model so far is lossless, the frequency

response ~V1 is infinite when the drive frequency coincides

with a resonant frequency, x¼xm. The structure would

have a finite response at the resonant frequency by including

a finite quality factor, Q. The effect of a finite Q may be

modeled by replacing the resonant factor ðx2 � x2
mÞ in cm

with ðx2 � jxxm=Qm � x2
mÞ, where Qm represents the qual-

ity factor of the mth eigenmode.7 We shall use this technique

to compare the analytic results with the numerical simula-

tion, which is described next.

III. PARTICLE-IN-CELL SIMULATION

In this section, we use the ICEPIC particle-in-cell code9

to simulate the response of the slow wave structure and com-

pare with the analytic theory.

Simulations were performed in 2-D geometry, shown in

Fig. 4. The third dimension, Z, is ignored. Two artificially

heavy particle beams (|e/m|¼ 1.602� 10�9 C/kg) are

launched from the emitter on the left-hand side of the simula-

tion. The beams travel toward the collector on the right-hand

side of the simulation, where they are absorbed. The first

beam is a constant-amplitude beam of “positrons” with K¼ 1,

in A/m. The second beam is a charge modulated “electron”

beam with K¼�1� sin[(c/L)*(xL/c)*t], also in A/m. The

velocity of both beams is selected to be (c/bL)*(xL/c). The

combination of the two beams yields an effective current sheet

with the spatial and temporal modulations corresponding to

the (xL/c) and (bL) values chosen [cf. Eq. (2)].

Resolution was set at 5 mm for both X and Y grids. The pe-

riod length, L, was defined to be 10 cm. The remaining geome-

try was then constrained per the ratios given in the caption of

Fig. 3. The slow wave structure consisted of a constant height

section (200 periods in length), with tapered sections (50 peri-

ods) at either end. All slow wave structure vanes were one cell

thick in the Y direction, making the cavity widths 9.5 cm.

The tapered slow wave structure sections were separated

from regions of perfectly matched load (PML,10 20 periods

in length) by vacuum sections 15 periods in length. The

emitter and collector, which pass through the PML regions,

were one cell thick in the X direction and 20 periods long.

The inter-vane voltage measurement was made using an E•dl
line integral extending from the tip of vane 100 to the tip of

vane 101 of the center section of the slow wave structure.

Data for xL/c values ranging from 0.140 to 1.300 are plot-

ted in Fig. 5. Due to the wide range in peak heights, the base

10 log is taken of the normalized amplitude scale described

previously in Fig. 3. The leftmost peak in Fig. 3 corresponds to

the intersection with the m¼ 1 branch of the dispersion rela-

tion qualitatively depicted in Fig. 2, with the m¼ 2 and m¼ 3

peaks following sequentially to the right. The peak locations in

the ICEPIC simulations were found to occur within 1.5% of

the analytically predicted values. A pseudocolor plot of the Y
component of the electric field is provided in Fig. 6. Figures

6(a)–6(c) correspond to the m¼ 1, 2, and 3 peaks of Fig. 5,

FIG. 4. Simulation geometry.

FIG. 5. Normalized simulation amplitude data for xL/c values of 0.140 to

1.300. The m¼ 1, 2, and 3 peaks are depicted (with the m¼ 1 peak being the

leftmost peak).

FIG. 3. The frequency response ~V 1 as a function of xL/c for the following

parameters: b/L¼ 6.0, h/L¼ 6.0, a/L¼ 5.8, b0L¼p/2.

FIG. 6. Pseudocolor plot of the Y component of the electric field. Plots

corresponding to the m¼ 1 (a), m¼ 2 (b), and m¼ 3 (c) mode. Peaks are

provided along with a grid plot of the simulated slow wave structure (d).

Scale multipliers for (a), (b), and (c) are 1� 105 V/m, 5� 104 V/m, and

4� 104 V/m, respectively.
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respectively. For reference, a grid plot showing the slow wave

structure is depicted in Fig. 6(d).

It is well known that the Q of a system can be repre-

sented by the total energy present in a system divided by the

total energy lost from the system over one RF cycle. For the

arrangement considered by the analytic calculations, infin-

itely high Q values are possible as no energy leaves the sys-

tem. As previously described, the ICEPIC simulations

presented here utilize a finite slow wave structure terminated

on either end with tapered sections and perfectly matched

load regions. The presence of these load regions represents

an energy loss mechanism within the simulation space. This

energy loss will necessarily result in finite Q values and thus

finite width resonance peaks.

The comparison between the ICEPIC simulations and

the analytic theory follows. First, to make the analytic fre-

quency response finite at x¼xm in Eq. (10), we introduce

a finite quality factor Qm in the manner given in the last

paragraph of Sec. II. The value of Qm is adjusted so that the

resonant peak at x¼xm is the same between the analytic

theory and the simulation, as shown in Fig. 7. The introduc-

tion of such a phenomenological Qm is necessary because of

the very different approximations that have been made

between the analytic model and the simulation, all of which

might affect the value of Q for each radial mode. Note that

in the analytic theory, fixing the value of Qm would also fix

the linewidth at x¼xm, in addition to the peak voltage at

the vane tip. From Fig. 7, we see that the values of such a

composite “loaded Q” are quite reasonable, for both the ana-

lytical and simulation model.

IV. CONCLUDING REMARKS

The excitation of a slow wave structure by a series of

impulses has been determined analytically by developing the

Green’s function for the system which includes all spatial har-

monics and all radial modes. Since any signal can be repre-

sented by a superposition of impulses, the solution derived here

can be used to determine the excitation of a SWS driven by an

arbitrary temporal signal. The analytic solution was compared

to particle-in-cell calculations in which an ideal current excita-

tion is used to measure the response of the SWS. A finite Q
was introduced into the analytical solution to account for previ-

ously mentioned effects which result in a finite line width in the

simulations. Despite the differences in the geometry and in the

approximations made between the analytic and simulation

models, the resonant peak locations (xL/c values) in the

ICEPIC simulations were found to agree with analytically pre-

dicted values to within 1.5%. The ability to analytically predict

excitation of RF within pulse excited systems not only furnishes

a vital tool to guide experimental efforts but also provides capa-

bilities to benchmark computational algorithm development.
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APPENDIX: THE GREENS’ FUNCTION

This appendix presents a form of the Green’s function

which may be computed numerically. It also displays the

contributions to the Green’s function from the various radial

modes and their space harmonics. The generality of the

structure of the Green’s function is noted.

Equation (6) may be rewritten as

Gðx; y; tÞ ¼
X1
m¼1

ð
dbe�jbðy�a0Þ

ð
dxejxtcmHzmðx; yÞ

¼
X1
m¼1

ð1

�1

dbe�jbðy�a0ÞAmHzmðx; yÞ
ð
C

dx
ejxt

x2 � x2
m

;

(A1)

FIG. 7. Comparison of the frequency response in the analytic theory (left

curves) and ICEPIC simulation (right curves), for the m¼ 1, 2, and 3 modes

(top to bottom). The values of Q are chosen so that the peak response in the

analytic theory matches that of the ICEPIC simulation for each m-mode.
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where we have used Eq. (4) and the fact that Am and Hzm(x,y)

are independent of x. In the last integral of Eq. (A1), the

contour C lies in the lower half complex x-plane, according

to the Laplace transform theory.11 Since xm¼xm(b) is real

for real b (Fig. 2), the simple residue theory yields11

ð1

�1

dx
ejxt

x2 � x2
m

¼ 2p
xm

sinðxmtÞ; t > 0: (A2)

Inserting Eq. (A2) into Eq. (A1), we obtain

Gðx; y; tÞ ¼
X1
m¼1

ð1

�1

dbe�jbðy�a0ÞFðbÞ; (A3)

FðbÞ ¼ 2psinðxmtÞ
xm

AmHzmðx; yÞ: (A4)

From Bloch’s theorem,7 both xm and F(b) are periodic in b
with period 2p/L. The integral in Eq. (A3) may then be fur-

ther simplified

ð1

�1

dbe�jbðy�a0ÞFðbÞ¼
X1

l¼�1

ð2pðlþ1Þ=L

2pl=L

dbe�jbðy�a0ÞFðbÞ

¼
X1

l¼�1

ð2p=L

0

db
0
e�jðb0þ2plLÞðy�a0ÞFðb0þ2pl=LÞ;

(A5)

where b0 ¼ b - 2pl/L. We may now drop the prime in

the dummy variable b0 in the last of Eq. (A5). Equations

(A3)–(A5) then give

Gðx; y; tÞ ¼
X1
m¼1

X1
l¼�1

ð2p=L

0

dbe�jðbþ2plLÞðy�a0Þ

� 2psinðxmtÞ
xm

AmHzmðx; yÞ; (A6)

which can be calculated numerically. Physically, Eq. (A6) ex-

plicitly gives the contribution to the Green’s function from each

space harmonics (‘) of every radial mode (m). Comparing

Eq. (A6) with Eq. (4) of the main text, we note the generality

of the Green’s function (A6) for a periodic slow wave structure.
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