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This paper revisits the relativistic limiting current in planar, cylindrical, and spherical diodes, with
alternative analytic and numerical treatments which are easy to implement. Convenient,
approximate expressions for the limited current are presented for gap voltages up to 10 MV. They
are accurate to within 1% for planar diode, and to within 4% for both cylindrical and spherical
diode in the range 107° < re/rqa < 500, where r, and r. are, respectively, the anode and cathode
radius. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954827]

I. INTRODUCTION

Space charge limited current has been extensively
studied, beginning with the work of Child, Langmuir, and
Blodgett.'™ Child and Langmuir (CL) independently found
a closed form expression for the space charge limited current
in a planar diode."” Langmuir and Blodgett (LB) extended
this work to cylindrical and spherical geometries by separat-
ing the geometry effects from the voltage and deriving a
differential equation for the geometry.>*

The original works by Child, Langmuir, and Blodgett' ™
adopt a non-relativistic treatment. An early relativistic theory
of planar, cylindrical, and spherical diodes was given by
Acton in 1957.° Acton’s paper is largely forgotten now,
probably in part due to the limited range of validity in its
series solution. Later works on the relativistic planar diode
include the oft-cited paper by Jory and Trivelpiece,® and the
later work by Zhang et al.,’ which includes a relatively
simple scaling law. Zhang ef al.” and Chen ef al.® treat the
relativistic cylindrical diode, but not the spherical diode. For
a relativistic treatment of the spherical diode, reference may
be made to Chetvertkov’ and Belkin et al.'” None of the
above references include a convenient formula for the rela-
tivistic spherical or cylindrical diode. In addition, Pierce’s
classical converging gun design was based on the tabulated
solution of the non-relativistic spherical diode by Langmuir
and Blodgett;4 here we present a novel, simple scaling law
for spherical diodes which is valid up to 10 MV in diode
voltage.

The LB theory for the spherical and cylindrical diodes
contains a geometrical factor o and f3, respectively. These
geometrical factors are given in tabulated form in the range
3x107° < re/rqa < 500, where r, and r. are, respectively,
the anode and cathode radius.>* Recently, Zhu et al ! pro-
vided a fitting formula for o and f that is accurate to within
5% over the above range of r./r,. Here, we combine the
techniques of Zhang et al.” and Zhu et al."'" to propose fitting
formulas for the cylindrical diode [Egs. (29) and (32)] and
for the spherical diode [Egs. (36) and (39)], for gap voltages
up to 10 MV, and 1070 < re/ra < 500. For completeness,
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we include the fitting formula of Zhang et al.” for the relativ-
istic planar diode [Eq. (28)]. Some extensions of the classical
diode theory may be found in Refs. 12—-15.

In Section II, we express the limiting current in a relativ-
istic planar diode in terms of the hypergeometric function,
which readily reduces to the classical CL law in the non-
relativistic limits. In Section III, we present two numerical
schemes to solve for the relativistic cylindrical and spherical
limiting current. The first method employs a Lagrangian for-
mulation. The second method employs a change of variables
for the Poisson equation which overcome a numerical singu-
larity near the cathode. Both methods allow ready numerical
solutions and we have confirmed that they yield identical
numerical results. The numerical results are fitted into sim-
ple, ready to use formulas in Section I'V.

Il. PLANAR DIODE

First, an alternate relativistic solution of the one-
dimensional planar diode is presented. This new solution has
the advantage of being closed form and reducing to the clas-
sical CL solution in a simple manner.®'* Consider the planar
diode geometry shown in Fig. 1. Denote the cathode location
as z. and the anode location as z,. Referring to Fig. 1, either
z. = z1 and z, = 2p, or z, = zp and z, = z;. Further, the sepa-
ration between the plates is d = z, — z;. Let the cathode be
at a potential of ® =0 V, and the anode be at a potential of
® =V, > 0. The space charge limit implies that, at the cath-
ode, d®/dz = 0. A relativistic electron accelerated through a
potential, @, attains a kinetic energy

Zy Z

FIG. 1. Geometry of a one-dimensional, planar diode.
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(y — Dmc* = e, (1)

where m is the electron rest mass, c is the speed of light, and
e is the absolute value of the electron charge. Substituting
the definition 7 = (1 — (v/¢)*)™"/2, it can be shown that ve-
locity of the electrons is

B : @)

where the sign is chosen based on the direction of motion.
Assuming dependence on z only, and substituting E = —V®
into Gauss’s law yields Poisson’s equation
d*®
=-£ 3)

dz? €0

The current density in the z direction in A/m? is given by

Jplana.r = pv, “
and substituting into Poisson’s equation and using Eq. (2)
gives
De
d2 |Jp1dnd1" (I’}’12 + 1>
= 5
e )
mc2 mc2 )
with boundary conditions
D(z=2z.)=0, (6)
dd
— =0. 7
| )

=2z,

Following the procedure in Ref. 14, multiply Eq. (5) by
d®/dz to allow analytic integration, giving

De [ Qe
dq) 2 2mC|Jplanar‘ W (W + 2)
@) - o ®
dz €€y

Examining the boundary conditions shows that the constant
of integration, C; =0. Rearranging Eq. (8) and taking the
square root gives

—1/4
Qe [ D do 2mce | Jplanar
[—i(—i”ﬂ do _ [2mellya o)
mc? \mc dz eco

which can again be integrated, yielding

2020)** (1 37 g) _

) 2|Jp1anar‘
1 el
3(eme2) 44°4 " 2me

e€yc (2= %),
(10)

where the constant of integration is evaluated to enforce
®(z.) =0 and ,F; denotes a hypergeometric function.
Evaluating at z =z, and solving for the current density gives
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Examining Eq. (11) reveals it is identical to the classical CL
expression multiplied by the square of the hypergeometric
function. Further, the hypergeometric function approaches 1
as Voe/(2mc?) becomes small. Thus, Eq. (11) reduces to the
classical expression at small voltage, and the square of the
hypergeometric function provides the necessary relativistic
correction. For Ve > 2mc?, the infinite series for the hyper-
geometric function in Eq. (11) is divergent; its analytic con-
tinuation may be used.

lll. CYLINDRICAL AND SPHERICAL DIODE

To derive a convenient equation to integrate numerically
to find the current in a coaxial cylinder or concentric sphere
geometry, first consider the cross-section shown in Fig. 2.
Similar to the planar diode, denote the cathode radius 7. and
the anode radius r,. Referring to Fig. 2, either r. = r| and
rq =1, O 7. =1, and r, = r;. Also similar to the planar
diode, let the cathode be at a potential of ® =0 V, and the
anode be at a potential of ® =V, > 0. The space charge
limit implies that, at the cathode, d®/dr = 0

Langmuir and Blodgett™* considered this problem in a
classical (non-relativistic) sense by separating the effect of
the geometry from the voltage and deriving a differential
equation for the geometry parameter. In the fully relativistic
equations, the geometry effect is no longer separable. In the
derivation that follows, the coaxial cylinder equations are on
the left and the concentric sphere equations on the right.

Define J.y, to be the cylindrical radial current per unit
axial length in A/m and I, to be the total spherical radial
current in A. Then, the differential equations governing the
diode currents are

(A0 e () e
dr\ dr)  2mev’ dr dr) —  Adme
Substituting Eq. (2) and noting that both ® and its first deriva-

tive are zero at the cathode reveals the second derivative of ®
must be approaching infinity at the cathode. This complicates

/

FIG. 2. Cross-section of the coaxial cylinder or concentric sphere geometry.
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the numerical integration of these equations. Two methods of
dealing with this difficulty are presented below.

A. Method 1: Use of Lagrangian variable, t

Define ¢ to be the time in transit across gap, such that
t=0 is the time a given electron is born at the cathode. By
the chain rule

d . drd d
ai ™) =y = g ) (13

Thus, Eq. (12) becomes

i dd _ chl, d rdCD __Isph. (14)
dt d; 27meg dt dr 47e

Integrating and noting that the

2|,_o =0 gives

dd - ]cylt dd o Isphl

il — = . 15
dr 2nreg’  dr 47r2¢ (15
Again applying the chain rule gives
dq) ch]l dr dd . Ispht dr (16)
dt ~ 2mrepdt’ dt  4dmrlepdt’
Combining Eq. (16) with the expression for the velocity,
De (D
(2)
dr mc? \mc? an
v=—==
(D i
a — 41
mc

gives a system of equations which can be numerically inte-
grated. Note that the sign in Eq. (17) depends on whether the
cathode is outside or inside the anode. These equations can
be non-dimensionalized using = ct/r., 7 =r/r., ®
= Qe /(mc?), Jeyi = nleyiree/ (mc?) and Ign = nlgne/(mc?)
and noting that 1 = 1/(epc)

dd Jegit dr dd It dr

ar | C2nF di ar | A dt
di | | Vo@+2)|T |dr || Vo@+2)

dt T D+1 dt T D+

®(f=0)=0, O(f=0)=0,

Ff=0)=1, Ff=0)=1.
(18)

Given a current density J, cyl OF current I sph> the equations can
be integrated until 7 = r,/r. to find the transit time and the
anode potential together. The problem of finding the current
or current density from the anode potential is discussed in
Sec. I C.

B. Method 2: Change of variables

An alternate method is to substitute Eq. (17) into Eq.
(12), giving
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Qe
i(r@) eyl mc2+1
dr\  dr) 2= e [ e ’
o <2+2)
mc? \mc
Oe
i (,,Zd(b> — ’1|[5Ph‘ ﬁ—’_ ! (19)
dr dr

4n De <(I)e ) ’
— (—+2
mc? \mc?

where 1 = 1/(eoc) is used. Similar to the case above, these
equations are non-dimensionalized with 7 = r/r., ® = ®e/
(mc?), Jey = nleyiree/ (mc*), and Ign = nlgpne/ (mc?)

d( d(I)) — dz(D_i_@ |J_cyl| O+ 1
dr \"dr) —dr? T dr 2 /5@ +2)
, o T V@
i(ﬂ@) _pd® o dY | @1
o drr = Tdr - An\/o(@ +2)

To avoid the singularity in the second derivative at%the cath-
ode, the equations can be transformed using ¥ = @"

PV 3| ¥ 11 L<ﬁ>2_l£
dr* — 4nr ¥ 42 3 \dr Fdr’
PV 3] P41 s (d‘P) 2a¥
dr? 8’ \/‘PZTH 3P \dr Fdr’
Y(iF=1)=0
avy
dr lr=1 o

3/2
_ (1, Voe
LP<r = 7) = (#) 7 Q1)

d*¥ /dr? approaches a finite limit at the cathode, given by
P 9l PVl
F—1 dfz o 47'[\/5, F—1 dfz - 871:\/§

This allows a Taylor series solution for ¥ as 7 approaches
the cathode (¥ — 1)

=/ 9|chl| 9|IsPh|
Y(r
( ) 87‘5\/7 167‘6\/7

Additional terms for the Taylor series can be generated by
differentiating the equation for d*\¥/di* in Eq. (21) with
respect to 7 and applying L Hopital’s rule, a task which is
much simpler if it is noted that, in the vicinity of the cathode,
¥ < 1, thus

(22)

1%, () = (F—1). (23)

=2/3
¥ 1 1
éz% as 7 — 1. (24)
)
For use with packaged numerical ordinary differential
equation integrators, Eq. (21) can be converted to a system

of first order ordinary differential equations by defining
=d¥/dr
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av] | Y

dr | = |3l ¥ 41 Y Y|

dY o EI

il /3 7

-d’T_ L lP +2

El Y

di | _ | 3lgn| P77 41 +Y2 27

dx 8ni2 [, W7

i /3 4

_df_ L lP +2
Y(F=1)=0,
Y(F=1)=0,

(25)

In this context, the Taylor series approximation near the
cathode (¥ — 1) is

[‘”ﬂ _| smy2 YO _ | 16nv2
YO | el =1) |7 LX) ] | Ol ipn| (7 —1)
42 87v/2

(26)

Note that numerical integrators of ordinary differential
equations often encounter difficulty when starting at initial
conditions of zero. The Taylor series approximation allows
this problem to be avoided by starting the process with fi-
nite initial conditions at 7 = 1 + 0, where J is a small
number.

C. Finding the current from the gap voltage

Eq. (18) or (25) is convenient for finding the gap voltage
(Vo) given a current density (coaxial cylinders) or current
(concentric spheres). Often, the gap voltage is given, and the
current density or current is the quantity to determine. For
this task, consider Fig. 3 where the current density or current
is shown as a function of gap voltage. Also shown are the

107 Coaxial Cylinders
% 10°}
~— 5
> 107 ¢ .
= R3S
a oy
3 %
€ 10° ¢
0
£ 102}
5] — Fully Relativisitic
aQ 10} -- Langmuir-Blodgett
N 0 Ultra-Relativisitic
10 . : -
10* 102 10° 10* 10° 10°

Voltage (kV)

(a)
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classical LB** result and an ultra-relativistic approximation,
derived by assuming @ >> 2 and analytically integrating the
resulting approximation to Eq. (20). The ultra-relativistic
approximation is thus given by

Jur o 27[‘/0
ol nra[l — refra — (re/ra)In(ry/re)]’
47V,
Iur — T 0 (27)

el = 1= G )

where Vo = Vje/(mc?). The point at which the classical LB
current crosses the ultra-relativistic current is easily deter-
mined. Note that to the left of that point, the classical LB
current over estimates the fully relativistic current. Similarly,
to the right of that point, the ultra-relativistic current over
estimates the fully relativistic current. Thus, starting from an
approximation known to over estimate the true result, a
bisection algorithm can quickly find the current density or
current from the gap voltage with a few numerical integra-
tions of Eq. (18) or (25).

IV. FITTING FORMULAS FOR RELATIVISTIC PLANAR,
CYLINDRICAL, AND SPHERICAL DIODES

For a planar diode, Zhang er al.” derive the approximate
solution

2mc? (y2/3 — 1)3/2
ned® (V3—1)yr+1’

where y = 1 + eV /(mc?) and p is a fitting parameter set to
0.392 in Ref. 7. Note that in Ref. 7, p is denoted «; the
notation change to p avoids confusion with the spherical LB
geometry factor, which is denoted as o below. Use of Eq.
(28) avoids the computation of the hypergeometric function
in Eq. (11), and the error for V< 10 MV is less than 0.9%,
as shown in Fig. 4.

For a cylindrical diode, Zhang et al.” derived the ap-
proximate solution

Jplanar = (28)

10° Concqntrlc Sp_heres
10°
10?
g 10
£ 10?
]
E 1
5 10
© o
10 — Fully Relativisitic
10! -- Langmuir-Blodgett
5 Ultra-Relativisitic
10°
10! 10° 103 10* 10° 10°

Voltage (kV)

(b)

FIG. 3. Current as a function of gap voltage for 7.=1.4cm and r, = 3.3 cm.
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FIG. 4. Plot showing the error of the approximate current solution for a pla-
nar diode.

21 mc? (23 - 1)3/2
chl = 767‘ A(Li) ﬁﬁz(u) ) (29)
1 ¢la (T Aw) 1)V7p +1
where u=r,/re, A) =1—u"" —u"'Inu, and f*(u) is

the LB geometry factor.” Comparing to the numerically inte-
grated solution for V< 10 MV and 107° < r, /ra < 500, the
error is minimized for p =0.384. For p =0.384, the error is
less than 3.9% over the range Vo < 10 MV and 107> < r, /Ta
< 500. The error can be lowered to less than 2.4% by using
p=0384+fi(x,y) +falx,y) where x=log(re/ra), ¥
= log,((Vo/1kV), and

g — (x+5)2+ <y—3.3>2
1 = 4 2 )

—02*(1—d1) dy <1
fi(xy) = (30)

0 else,
0 <x 2.7)2 . <y4.0)2
T\ 28 06 )’
005*(1—d2) d, <1
fa(x,y) = (3D
0 else.

Note that y = log,,(Vo/1kV) encounters a singularity as V,
— 0. However, d; > 1 and therefore f; =0 for all y < 1.3,
which corresponds to Vy < 19.95kV, and d, > 1 and there-
fore =0 for all y <3.4, which corresponds to Vy<2.51
MV. Thus, in the deep non-relativistic limit, y need not be
computed. Alternatively, the non-relativistic scaling given in
Ref. 11 is valid in this regime. The approximation in Eq.
(29) is still difficult to use due to the inclusion of the LB
geometry factor f%(u). Its use is simplified by using an ap-
proximate geometry factor'"

L U YO [
u .
[l + Fey(1/u)] (32)

1 else,

ﬁipprox (u) =

where

Phys. Plasmas 23, 072101 (2016)

Fuy C_() ~exp {(s —50)(7s +23)(8s — 417) L33

y 143742
s=1In[In(1 + r./r,)], (34)
so = In[In(2)]. (35)

The use of the approximate geometry factor in Eq. (29)
increases the maximum error to 4.0%. Plots of the error over
the Vo< 10 MV and 10> < r./r, < 500 range using both
exact and the approximate geometry parameter are shown in
Fig. 5.

Following the methodology of Ref. 7 for the spherical
case yields

3/2
4n mc? P23 —1
Ign = — Vi) . (6)
n EB(M) \/§a2(u)
VXU )y 4
2 B(u)

where B(u) = u~' — 1 — Inu~! and «?(u) is the LB geome-
try factor.* In this case, a constant value of p =0.360 leads
to an error of less than 6.7%. The error can be lowered to
less than 3.3% using p =0.325+f(x,y) +/2(x,y) where
x=10g,0(re/7a), ¥ = 0gy(Vo/ 1 V), and

2 2

x+5 y—4

dy = A
! (4)*(2)’

f'l(x,y):{g'm(l_dl) js:l (37)
(=2 V324 (y—5)/2]
b= [ 4 }
~(r=2)/2+ (-5 *v3/2]
| 2 I
0075 (1-dy) dr< 1 s
(xy) = 0 else. (38)

Similar to the cylindrical diode case, the singularity of
y = log,((Vo/1kV) as Vy — 0 can be avoided by noting that
d; > 1 and therefore f; =0 for all y <2, which corresponds
to Vo< 100kV, and d,>1 and therefore f,=0 for all
y <2.78, which corresponds to V< 604kV. Thus, y need
not be computed in the non-relativistic limit. Alternatively,
in the non-relativistic limit, the scaling in Ref. 11 can be
used. The use of Eq. (36) can be simplified by using an
approximate geometry factor''

) (u—1)>°

_ 39
Lgpprox (1) w21 + Fn(1/u)]’ >
where
e\ _ o |(5 = s0)(9s = 37)(4s + 143)
Fapn (ra) = eXP[ 42092 1, (40)

and s and sy are as defined in Egs. (34) and (35). Use of the
approximate geometry parameter results in a maximum error
in the current of 3.1%. Plots of the error over the V< 10 MV



072101-6 Greenwood et al.
4.0 4
3.5 3
3.0 2
E 2.5 1 5
-
Ez.o 0 =
g
-2
0.5 -3
0.0 -4
-5 -4 -3 -2 -1 O 1 2
|09(T’c/7‘a)

(a)

Phys. Plasmas 23, 072101 (2016)

4.0
3.5
3.0
2.5

S 2.0

Z1s
1.0 -2
0.5 -3
0.0 -4

-5 -4 -3 -2 -1 0 1
log(rc/ra)

(b)

1kV)
© B N W &

|
[=]
%Error

FIG. 5. Plots showing the error of the approximate current solution for a cylindrical diode using (a) the exact and (b) the approximate LB geometry parameter.
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FIG. 6. Plots showing the error of the approximate current solution for a spherical diode using (a) the exact and (b) the approximate LB geometry parameter.

and 10~° < r./r, < 500 range using both exact and the ap-
proximate geometry parameter are shown in Fig. 6.

V. CONCLUSION

Space charge limited current in relativistic diodes is
extensively studied. Herein, a relativistically correct solution
is presented for a planar diode that reduces to the classical
CL solution in a simple manner. Exact solutions at relativis-
tic energies for a coaxial cylindrical or concentric spherical
diode require numerical integration. The numerical integra-
tion can be difficult due to a singularity near the cathode;
two methods to overcome the difficulty are presented.
Finally, approximate solutions for coaxial cylinder and con-
centric sphere diodes are presented. The approximate solu-
tions are valid for gap voltages up to 10 MV and for cathode
to anode radius ratios from 107> to 500. The approximate
solutions can be used for rapid calculation, and the numeri-
cally integrated solutions are employed when high accuracy
is needed. One application of this work is the testing of
numerical simulation codes that model particle emission,

such as particle in cell (PIC) codes.'® The analytic results
discussed herein provide benchmarks for 1D, 2D, and 3D
emission algorithms.
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