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This paper revisits the relativistic limiting current in planar, cylindrical, and spherical diodes, with

alternative analytic and numerical treatments which are easy to implement. Convenient,

approximate expressions for the limited current are presented for gap voltages up to 10 MV. They

are accurate to within 1% for planar diode, and to within 4% for both cylindrical and spherical

diode in the range 10�5 < rc=ra < 500, where ra and rc are, respectively, the anode and cathode

radius. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954827]

I. INTRODUCTION

Space charge limited current has been extensively

studied, beginning with the work of Child, Langmuir, and

Blodgett.1–4 Child and Langmuir (CL) independently found

a closed form expression for the space charge limited current

in a planar diode.1,2 Langmuir and Blodgett (LB) extended

this work to cylindrical and spherical geometries by separat-

ing the geometry effects from the voltage and deriving a

differential equation for the geometry.3,4

The original works by Child, Langmuir, and Blodgett1–4

adopt a non-relativistic treatment. An early relativistic theory

of planar, cylindrical, and spherical diodes was given by

Acton in 1957.5 Acton’s paper is largely forgotten now,

probably in part due to the limited range of validity in its

series solution. Later works on the relativistic planar diode

include the oft-cited paper by Jory and Trivelpiece,6 and the

later work by Zhang et al.,7 which includes a relatively

simple scaling law. Zhang et al.7 and Chen et al.8 treat the

relativistic cylindrical diode, but not the spherical diode. For

a relativistic treatment of the spherical diode, reference may

be made to Chetvertkov9 and Belkin et al.10 None of the

above references include a convenient formula for the rela-

tivistic spherical or cylindrical diode. In addition, Pierce’s

classical converging gun design was based on the tabulated

solution of the non-relativistic spherical diode by Langmuir

and Blodgett;4 here we present a novel, simple scaling law

for spherical diodes which is valid up to 10 MV in diode

voltage.

The LB theory for the spherical and cylindrical diodes

contains a geometrical factor a and b, respectively. These

geometrical factors are given in tabulated form in the range

3� 10�5 < rc=ra < 500, where ra and rc are, respectively,

the anode and cathode radius.3,4 Recently, Zhu et al.11 pro-

vided a fitting formula for a and b that is accurate to within

5% over the above range of rc=ra. Here, we combine the

techniques of Zhang et al.7 and Zhu et al.11 to propose fitting

formulas for the cylindrical diode [Eqs. (29) and (32)] and

for the spherical diode [Eqs. (36) and (39)], for gap voltages

up to 10 MV, and 10�5 < rc=ra < 500. For completeness,

we include the fitting formula of Zhang et al.7 for the relativ-

istic planar diode [Eq. (28)]. Some extensions of the classical

diode theory may be found in Refs. 12–15.

In Section II, we express the limiting current in a relativ-

istic planar diode in terms of the hypergeometric function,

which readily reduces to the classical CL law in the non-

relativistic limits. In Section III, we present two numerical

schemes to solve for the relativistic cylindrical and spherical

limiting current. The first method employs a Lagrangian for-

mulation. The second method employs a change of variables

for the Poisson equation which overcome a numerical singu-

larity near the cathode. Both methods allow ready numerical

solutions and we have confirmed that they yield identical

numerical results. The numerical results are fitted into sim-

ple, ready to use formulas in Section IV.

II. PLANAR DIODE

First, an alternate relativistic solution of the one-

dimensional planar diode is presented. This new solution has

the advantage of being closed form and reducing to the clas-

sical CL solution in a simple manner.6,14 Consider the planar

diode geometry shown in Fig. 1. Denote the cathode location

as zc and the anode location as za. Referring to Fig. 1, either

zc ¼ z1 and za ¼ z2, or zc ¼ z2 and za ¼ z1. Further, the sepa-

ration between the plates is d ¼ z2 � z1. Let the cathode be

at a potential of U¼ 0 V, and the anode be at a potential of

U ¼ V0 > 0. The space charge limit implies that, at the cath-

ode, dU=dz ¼ 0. A relativistic electron accelerated through a

potential, U, attains a kinetic energy

FIG. 1. Geometry of a one-dimensional, planar diode.
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ðc� 1Þmc2 ¼ Ue; (1)

where m is the electron rest mass, c is the speed of light, and

e is the absolute value of the electron charge. Substituting

the definition c ¼ ð1� ðv=cÞ2Þ�1=2
, it can be shown that ve-

locity of the electrons is

v ¼ 6c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ue

mc2

Ue

mc2
þ 2

� �s

Ue

mc2
þ 1

; (2)

where the sign is chosen based on the direction of motion.

Assuming dependence on z only, and substituting E ¼ �rU
into Gauss’s law yields Poisson’s equation

d2U
dz2
¼ � q

�0

: (3)

The current density in the z direction in A=m2 is given by

Jplanar ¼ qv; (4)

and substituting into Poisson’s equation and using Eq. (2)

gives

d2U
dz2
¼
jJplanarj

Ue

mc2
þ 1

� �

�0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ue

mc2

Ue

mc2
þ 2

� �s ; (5)

with boundary conditions

Uðz ¼ zcÞ ¼ 0; (6)

dU
dz

����
z¼zc

¼ 0: (7)

Following the procedure in Ref. 14, multiply Eq. (5) by

dU=dz to allow analytic integration, giving

dU
dz

� �2

¼
2mcjJplanarj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ue

mc2

Ue

mc2
þ 2

� �s

e�0

þ C1: (8)

Examining the boundary conditions shows that the constant

of integration, C1¼ 0. Rearranging Eq. (8) and taking the

square root gives

Ue

mc2

Ue

mc2
þ 2

� �� ��1=4
dU
dz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcjJplanarj

e�0

s
; (9)

which can again be integrated, yielding

2 2Uð Þ3=4

3 emc2ð Þ1=4 2F1

1

4
;
3

4
;
7

4
;� Ue

2mc2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jJplanarj

e�0c

s
z� zcð Þ;

(10)

where the constant of integration is evaluated to enforce

UðzcÞ ¼ 0 and 2F1 denotes a hypergeometric function.

Evaluating at z¼ za and solving for the current density gives

jJplanarj ¼
4

9
�0

ffiffiffiffiffi
2e

m

r
V

3=2
0

d2 2F1

1

4
;
3

4
;
7

4
;� V0e

2mc2

� �� �2

: (11)

Examining Eq. (11) reveals it is identical to the classical CL

expression multiplied by the square of the hypergeometric

function. Further, the hypergeometric function approaches 1

as V0e=ð2mc2Þ becomes small. Thus, Eq. (11) reduces to the

classical expression at small voltage, and the square of the

hypergeometric function provides the necessary relativistic

correction. For V0e > 2mc2, the infinite series for the hyper-

geometric function in Eq. (11) is divergent; its analytic con-

tinuation may be used.

III. CYLINDRICAL AND SPHERICAL DIODE

To derive a convenient equation to integrate numerically

to find the current in a coaxial cylinder or concentric sphere

geometry, first consider the cross-section shown in Fig. 2.

Similar to the planar diode, denote the cathode radius rc and

the anode radius ra. Referring to Fig. 2, either rc ¼ r1 and

ra ¼ r2, or rc ¼ r2 and ra ¼ r1. Also similar to the planar

diode, let the cathode be at a potential of U¼ 0 V, and the

anode be at a potential of U ¼ V0 > 0. The space charge

limit implies that, at the cathode, dU=dr ¼ 0.

Langmuir and Blodgett3,4 considered this problem in a

classical (non-relativistic) sense by separating the effect of

the geometry from the voltage and deriving a differential

equation for the geometry parameter. In the fully relativistic

equations, the geometry effect is no longer separable. In the

derivation that follows, the coaxial cylinder equations are on

the left and the concentric sphere equations on the right.

Define Jcyl to be the cylindrical radial current per unit

axial length in A/m and Isph to be the total spherical radial

current in A. Then, the differential equations governing the

diode currents are

d

dr
r

dU
dr

� �
¼ � Jcyl

2p�0v
;

d

dr
r2 dU

dr

� �
¼ � Isph

4p�0v
: (12)

Substituting Eq. (2) and noting that both U and its first deriva-

tive are zero at the cathode reveals the second derivative of U
must be approaching infinity at the cathode. This complicates

FIG. 2. Cross-section of the coaxial cylinder or concentric sphere geometry.
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the numerical integration of these equations. Two methods of

dealing with this difficulty are presented below.

A. Method 1: Use of Lagrangian variable, t

Define t to be the time in transit across gap, such that

t¼ 0 is the time a given electron is born at the cathode. By

the chain rule

d

dt
�ð Þ ¼ dr

dt

d

dr
�ð Þ ¼ v

d

dr
�ð Þ: (13)

Thus, Eq. (12) becomes

d

dt
r

dU
dr

� �
¼ � Jcyl

2p�0

;
d

dt
r2 dU

dr

� �
¼ � Isph

4p�0

: (14)

Integrating and noting that the dU
dr jt¼0 ¼ 0 gives

dU
dr
¼ � Jcylt

2pr�0

;
dU
dr
¼ � Ispht

4pr2�0

: (15)

Again applying the chain rule gives

dU
dt
¼ � Jcylt

2pr�0

dr

dt
;

dU
dt
¼ � Ispht

4pr2�0

dr

dt
: (16)

Combining Eq. (16) with the expression for the velocity,

v ¼ dr

dt
¼ 6

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ue

mc2

Ue

mc2
þ 2

� �s

Ue

mc2
þ 1

; (17)

gives a system of equations which can be numerically inte-

grated. Note that the sign in Eq. (17) depends on whether the

cathode is outside or inside the anode. These equations can

be non-dimensionalized using �t ¼ ct=rc; �r ¼ r=rc; �U
¼ Ue=ðmc2Þ; �Jcyl ¼ gJcylrce=ðmc2Þ and �Isph ¼ gIsphe=ðmc2Þ
and noting that g ¼ 1=ð�0cÞ

d �U
d�t
d�r

d�t

2
664

3
775¼

�
�Jcyl�t

2p�r

d�r

d�t

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U �Uþ 2ð Þ

p
�Uþ 1

2
6664

3
7775;

d �U
d�t
d�r

d�t

2
664

3
775¼

�
�Isph�t

4p�r2

d�r

d�t

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U �Uþ 2ð Þ

p
�Uþ 1

2
6664

3
7775;

�U �t ¼ 0ð Þ ¼ 0; �U �t ¼ 0ð Þ ¼ 0;

�r �t ¼ 0ð Þ ¼ 1; �r �t ¼ 0ð Þ ¼ 1:

(18)

Given a current density �Jcyl or current �I sph, the equations can

be integrated until �r ¼ ra=rc to find the transit time and the

anode potential together. The problem of finding the current

or current density from the anode potential is discussed in

Sec. III C.

B. Method 2: Change of variables

An alternate method is to substitute Eq. (17) into Eq.

(12), giving

d

dr
r

dU
dr

� �
¼ gjJcylj

2p

Ue

mc2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ue

mc2

Ue

mc2
þ 2

� �s ;

d

dr
r2 dU

dr

� �
¼ gjIsphj

4p

Ue

mc2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ue

mc2

Ue

mc2
þ 2

� �s ; (19)

where g ¼ 1=ð�0cÞ is used. Similar to the case above, these

equations are non-dimensionalized with �r ¼ r=rc; �U ¼ Ue=
ðmc2Þ; �Jcyl ¼ gJcylrce=ðmc2Þ, and �Isph ¼ gIsphe=ðmc2Þ

d

d�r
�r

d �U
d�r

� �
¼ �r

d2 �U
d�r2
þ d �U

d�r
¼ j

�Jcylj
2p

�U þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U �U þ 2ð Þ

p ;

d

d�r
�r2 d �U

d�r

� �
¼ �r2 d2 �U

d�r2
þ 2�r

d �U
d�r
¼ j

�Isphj
4p

�U þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U �U þ 2ð Þ

p : (20)

To avoid the singularity in the second derivative at the cath-

ode, the equations can be transformed using �W ¼ �U
3=2

d2 �W
d�r2
¼ 3j�J cylj

4p�r

�W
2=3 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

2=3 þ 2

q þ 1

3 �W

d �W
d�r

� �2

� 1

�r

d �W
d�r

;

d2 �W
d�r2
¼ 3j�Isphj

8p�r2

�W
2=3 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

2=3 þ 2

q þ 1

3 �W

d �W
d�r

� �2

� 2

�r

d �W
d�r

;

�W �r ¼ 1ð Þ ¼ 0;

d �W
d�r

���
�r¼1
¼ 0;

�W �r ¼ ra

rc

� �
¼ V0e

mc2

� �3=2

; (21)

d2 �W=d�r2 approaches a finite limit at the cathode, given by

lim
�r!1

d2 �W
d�r2
¼ 9j�Jcylj

4p
ffiffiffi
2
p ; lim

�r!1

d2 �W
d�r2
¼ 9j�Isphj

8p
ffiffiffi
2
p : (22)

This allows a Taylor series solution for �W as �r approaches

the cathode (�r ! 1)

�W �rð Þ ¼ 9j�Jcylj
8p

ffiffiffi
2
p �r � 1ð Þ2; �W �rð Þ ¼ 9j�I sphj

16p
ffiffiffi
2
p �r � 1ð Þ2 : (23)

Additional terms for the Taylor series can be generated by

differentiating the equation for d2 �W=d�r2 in Eq. (21) with

respect to �r and applying L’Hôpital’s rule, a task which is

much simpler if it is noted that, in the vicinity of the cathode,
�W

2=3 � 1, thus

�W
2=3 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

2=3 þ 2

q � 1ffiffiffi
2
p as �r ! 1: (24)

For use with packaged numerical ordinary differential

equation integrators, Eq. (21) can be converted to a system

of first order ordinary differential equations by defining
�! ¼ d �W=d�r
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d �W
d�r

d �!
d�r

2
6664

3
7775 ¼

�!

3j�Jcylj
4p�r

�W
2=3 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

2=3 þ 2

q þ
�!

2

3 �W
�

�!
�r

2
6664

3
7775;

d �W
d�r

d �!
d�r

2
6664

3
7775 ¼

�!

3j�I sphj
8p�r2

�W
2=3 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

2=3 þ 2

q þ
�!

2

3 �W
� 2�!

�r

2
6664

3
7775;

�W �r ¼ 1ð Þ ¼ 0;

�! �r ¼ 1ð Þ ¼ 0;

�W �r ¼ ra

rc

� �
¼ V0e

mc2

� �3=2

; (25)

In this context, the Taylor series approximation near the

cathode (�r ! 1) is

�W �rð Þ
�! �rð Þ

� �
¼

9j�Jcylj �r�1ð Þ2

8p
ffiffiffi
2
p

9j�Jcylj �r�1ð Þ
4p

ffiffiffi
2
p

2
6664

3
7775; �W �rð Þ

�! �rð Þ

� �
¼

9j�Isphj �r�1ð Þ2

16p
ffiffiffi
2
p

9j�I sphj �r�1ð Þ
8p

ffiffiffi
2
p

2
6664

3
7775 :

(26)

Note that numerical integrators of ordinary differential

equations often encounter difficulty when starting at initial

conditions of zero. The Taylor series approximation allows

this problem to be avoided by starting the process with fi-

nite initial conditions at �r ¼ 1þ d, where d is a small

number.

C. Finding the current from the gap voltage

Eq. (18) or (25) is convenient for finding the gap voltage

(V0) given a current density (coaxial cylinders) or current

(concentric spheres). Often, the gap voltage is given, and the

current density or current is the quantity to determine. For

this task, consider Fig. 3 where the current density or current

is shown as a function of gap voltage. Also shown are the

classical LB3,4 result and an ultra-relativistic approximation,

derived by assuming �U � 2 and analytically integrating the

resulting approximation to Eq. (20). The ultra-relativistic

approximation is thus given by

Jur
cyl ¼

2pV0

gra 1� rc=ra � rc=rað Þln ra=rcð Þ½ � ;

Iur
sph ¼

4pV0

g rc=ra � 1� ln rc=rað Þ½ � ; (27)

where �V0 ¼ V0e=ðmc2Þ. The point at which the classical LB

current crosses the ultra-relativistic current is easily deter-

mined. Note that to the left of that point, the classical LB

current over estimates the fully relativistic current. Similarly,

to the right of that point, the ultra-relativistic current over

estimates the fully relativistic current. Thus, starting from an

approximation known to over estimate the true result, a

bisection algorithm can quickly find the current density or

current from the gap voltage with a few numerical integra-

tions of Eq. (18) or (25).

IV. FITTING FORMULAS FOR RELATIVISTIC PLANAR,
CYLINDRICAL, AND SPHERICAL DIODES

For a planar diode, Zhang et al.7 derive the approximate

solution

Jplanar ¼
2

g
mc2

ed2

c2=3 � 1
� 	3=2ffiffiffi
3
p
� 1

� 	
c�p þ 1

; (28)

where c ¼ 1þ eV0=ðmc2Þ and p is a fitting parameter set to

0.392 in Ref. 7. Note that in Ref. 7, p is denoted a; the

notation change to p avoids confusion with the spherical LB

geometry factor, which is denoted as a below. Use of Eq.

(28) avoids the computation of the hypergeometric function

in Eq. (11), and the error for V0< 10 MV is less than 0.9%,

as shown in Fig. 4.

For a cylindrical diode, Zhang et al.7 derived the ap-

proximate solution

FIG. 3. Current as a function of gap voltage for rc¼ 1.4 cm and ra¼ 3.3 cm.
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Jcyl ¼
2p
g

mc2

eraA uð Þ
c2=3 � 1
� 	3=2ffiffi

3
p

2

b2 uð Þ
A uð Þ � 1


 �
c�p þ 1

; (29)

where u ¼ ra=rc; AðuÞ ¼ 1� u�1 � u�1 ln u, and b2ðuÞ is

the LB geometry factor.3 Comparing to the numerically inte-

grated solution for V0< 10 MV and 10�5 < rc=ra < 500, the

error is minimized for p¼ 0.384. For p¼ 0.384, the error is

less than 3.9% over the range V0< 10 MV and 10�5 < rc=ra

< 500. The error can be lowered to less than 2.4% by using

p ¼ 0:384þ f1ðx; yÞ þ f2ðx; yÞ where x ¼ log10ðrc=raÞ; y
¼ log10ðV0=1kVÞ, and

d1 ¼
xþ 5

4

� �2

þ y� 3:3

2

� �2

;

f1 x; yð Þ ¼
�0:2 � 1� d1ð Þ d1 < 1

0 else;

(
(30)

d2 ¼
x� 2:7

2:8

� �2

þ y� 4:0

0:6

� �2

;

f2 x; yð Þ ¼
0:05 � 1� d2ð Þ d2 < 1

0 else:

(
(31)

Note that y ¼ log10ðV0=1kVÞ encounters a singularity as V0

! 0. However, d1> 1 and therefore f1¼ 0 for all y< 1.3,

which corresponds to V0< 19.95 kV, and d2> 1 and there-

fore f2¼ 0 for all y< 3.4, which corresponds to V0< 2.51

MV. Thus, in the deep non-relativistic limit, y need not be

computed. Alternatively, the non-relativistic scaling given in

Ref. 11 is valid in this regime. The approximation in Eq.

(29) is still difficult to use due to the inclusion of the LB

geometry factor b2ðuÞ. Its use is simplified by using an ap-

proximate geometry factor11

b2
approx uð Þ ¼

ju� 1j1=2jln uð Þj3=2

u 1þ Fcyl 1=uð Þ
�  u < 781:07

1 else;

8>><
>>: (32)

where

Fcyl

rc

ra

� �
¼ exp

s� s0ð Þ 7sþ 23ð Þ 8s� 417ð Þ
143742

� �
� 1; (33)

s ¼ ln½lnð1þ rc=raÞ�; (34)

s0 ¼ ln½lnð2Þ�: (35)

The use of the approximate geometry factor in Eq. (29)

increases the maximum error to 4.0%. Plots of the error over

the V0< 10 MV and 10�5 < rc=ra < 500 range using both

exact and the approximate geometry parameter are shown in

Fig. 5.

Following the methodology of Ref. 7 for the spherical

case yields

Isph ¼
4p
g

mc2

eB uð Þ
c2=3 � 1
� 	3=2

ffiffiffi
3
p

2

a2 uð Þ
B uð Þ

� 1

 !
c�p þ 1

; (36)

where BðuÞ ¼ u�1 � 1� lnu�1 and a2ðuÞ is the LB geome-

try factor.4 In this case, a constant value of p¼ 0.360 leads

to an error of less than 6.7%. The error can be lowered to

less than 3.3% using p¼ 0:325þ f1ðx;yÞþ f2ðx;yÞ where

x¼ log10ðrc=raÞ; y¼ log10ðV0=1kVÞ, and

d1 ¼
xþ 5

4

� �2

þ y� 4

2

� �2

;

f1 x; yð Þ ¼
0:12 � 1� d1ð Þ d1 < 1

0 else;

(
(37)

d2 ¼
x� 2ð Þ �

ffiffiffi
3
p

=2þ y� 5ð Þ=2

4

� �2

þ � x� 2ð Þ=2þ y� 5ð Þ �
ffiffiffi
3
p

=2

2

� �2

;

f2 x; yð Þ ¼
0:07 � 1� d2ð Þ d2 < 1

0 else:

(
(38)

Similar to the cylindrical diode case, the singularity of

y ¼ log10ðV0=1kVÞ as V0 ! 0 can be avoided by noting that

d1 > 1 and therefore f1¼ 0 for all y< 2, which corresponds

to V0< 100 kV, and d2> 1 and therefore f2¼ 0 for all

y< 2.78, which corresponds to V0< 604 kV. Thus, y need

not be computed in the non-relativistic limit. Alternatively,

in the non-relativistic limit, the scaling in Ref. 11 can be

used. The use of Eq. (36) can be simplified by using an

approximate geometry factor11

a2
approx uð Þ ¼ u� 1ð Þ2

u3=2 1þ Fsph 1=uð Þ
�  ; (39)

where

Fsph

rc

ra

� �
¼ exp

s� s0ð Þ 9s� 37ð Þ 4sþ 143ð Þ
42092

� �
� 1; (40)

and s and s0 are as defined in Eqs. (34) and (35). Use of the

approximate geometry parameter results in a maximum error

in the current of 3.1%. Plots of the error over the V0< 10 MV

FIG. 4. Plot showing the error of the approximate current solution for a pla-

nar diode.
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and 10�5 < rc=ra < 500 range using both exact and the ap-

proximate geometry parameter are shown in Fig. 6.

V. CONCLUSION

Space charge limited current in relativistic diodes is

extensively studied. Herein, a relativistically correct solution

is presented for a planar diode that reduces to the classical

CL solution in a simple manner. Exact solutions at relativis-

tic energies for a coaxial cylindrical or concentric spherical

diode require numerical integration. The numerical integra-

tion can be difficult due to a singularity near the cathode;

two methods to overcome the difficulty are presented.

Finally, approximate solutions for coaxial cylinder and con-

centric sphere diodes are presented. The approximate solu-

tions are valid for gap voltages up to 10 MV and for cathode

to anode radius ratios from 10�5 to 500. The approximate

solutions can be used for rapid calculation, and the numeri-

cally integrated solutions are employed when high accuracy

is needed. One application of this work is the testing of

numerical simulation codes that model particle emission,

such as particle in cell (PIC) codes.16 The analytic results

discussed herein provide benchmarks for 1D, 2D, and 3D

emission algorithms.
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