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We examine the effects of temperature dependence of the electrical and thermal conductivities on

Joule heating of a one-dimensional conductor by solving the coupled non-linear steady state electri-

cal and thermal conduction equations. The spatial temperature distribution and the maximum tem-

perature and its location within the conductor are evaluated for four cases: (i) constant electrical

conductivity and linear temperature dependence of thermal conductivity, (ii) linear temperature

dependence of both electrical and thermal conductivities, (iii) the Wiedemann–Franz relation for

metals, and (iv) polynomial fits to measured data for carbon nanotube fibers and for copper. For (i)

and (ii), it is found that there are conditions under which no steady state solution exists, which may

indicate the possibility of thermal runaway. For (i), analytical solutions are constructed, from which

explicit expressions for the parameter bounds for the existence of steady state solutions are

obtained. The shifting of these bounds due to the introduction of linear temperature dependence of

electrical conductivity (case (ii)) is studied numerically. These results may provide guidance in the

design of circuits and devices in which the effects of coupled thermal and electrical conduction are

important. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964112]

I. INTRODUCTION

Joule heating limits the operation of most current carry-

ing components and devices, ranging from large high power

systems to nanoscale wires and devices. The coupled

thermal-electrical conduction problem is important for wire-

array Z-pinches,1 power transmission lines,2 high power

microwave devices,3,4 and electrical contacts.5–9 In a Z-

pinch, in particular, coupled thermal-electrical conduction is

responsible for an electrothermal instability.10

Recent advancements in nanotechnology, the miniaturi-

zation of electronic devices, and the increase in density of

circuit integration make Joule heating increasingly impor-

tant to device performance and lifetime. The growing pack-

ing density and the power consumption of very large scale

integration (VLSI) circuits, in particular, have made thermal

effects one of the most important concerns of VLSI design-

ers.11 In micro-electro-mechanical (MEM) switches, the

durability of the devices is largely limited by Joule heating

at the contacting asperities.12,13 Coupled thermal-electrical

effects play important roles in current emission performance

as well as the stability of carbon nanofiber based field emit-

ters.14–17 There has also been interest in understanding and

controlling the local temperature increases within electri-

cally driven nanoscale wires and metallic interconnects.18

Thermal stability is one of the key challenges in nanoscale

devices made of novel materials, such as graphene19–21 and

organic materials.22,23 In electrically pumped nanolasers for

chip-scale optical communications, thermal management is

of crucial importance to realize room temperature

operation.24,25

Available 3D finite element simulation codes may be

used to compute the effects of coupled electrical and thermal

conduction with great accuracy. However, the parametric

dependences of the solution are difficult to determine from

such purely numerical calculations. Here, by using a very

simple 1D model, we aim to provide a better understanding

of the underlying physics and the influences of multiple

parameters on key properties of the solution, including the

maximum temperature and its location in the conductor.

In this paper, we evaluate the effects of temperature

dependence of the electrical and thermal conductivities on

the Joule heating of a one-dimensional (1D) conductor, by

solving the coupled non-linear steady state electrical and

thermal conduction equations. Section II provides the formu-

lation of our simple theory. Results and discussions are given

in Section III, where we have analyzed four cases: (1) con-

stant electrical conductivity and linear temperature depen-

dent thermal conductivity, (2) linear temperature dependence

of both electrical and thermal conductivities, (3) the

Wiedemann–Franz (WF) law, and (4) realistic examples for

carbon nanotube fibers (CNFs) and copper. A summary and

suggestions for future research are given in Section IV.

II. FORMULATION

Consider a one-dimensional (1D) conductor of length L,

which is held at temperatures T1 and T2 at its ends, and

across which a voltage of V0 is applied. The steady state heat

conduction and electrical current continuity equations are,

respectively,
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d

dz
j T; zð Þ d

dz
T zð Þ

� �
þ r T; zð Þ d

dz
V zð Þ

� �2

¼ 0; (1)

d

dz
r T; zð Þ d

dz
V zð Þ

� �
¼ 0; (2)

where jðT; zÞ and rðT; zÞ are the temperature-dependent

thermal and electrical conductivities, respectively, and VðzÞ
is the potential, TðzÞ is the temperature, and z is the location

along the 1D conductor. The above equations are solved

with the following boundary conditions:

Tðz ¼ 0Þ ¼ T1; (3a)

Tðz ¼ LÞ ¼ T2; (3b)

/ðz ¼ 0Þ ¼ 0; (3c)

/ðz ¼ LÞ ¼ V0: (3d)

Combining Eqs. (1), (2), (3c), and (3d), we have

d

dz
j T; zð Þ dT

dz

� �
þ J2

c

r T; zð Þ ¼ 0; (4)

where Jc ¼ rdV=dz ¼ constant is the current density in the

conductor, which satisfies
Ð L

0
ðJc=rÞdz ¼ V0.

For simplicity, we introduce the normalizations,

�z ¼ z=L, �T ¼ ðT � T1Þ=T0, with T0 ¼ T1 if T1 ¼ T2, and

T0 ¼ T2 � T1 if T1 6¼ T2, �V ¼ V=V0, �jð �T ; �zÞ ¼ jðT; zÞ=j0,

�rð �T ; �zÞ ¼ rðT; zÞ=r0, a ¼ r0V2
0=j0T0, J0 ¼ r0V0=L, and

Jc ¼ Jc=J0. Note that the parameter a includes the informa-

tion about the boundary conditions in Eqs. (3a)–(3d). j0 and

r0 are constants to be defined below. Equation (4) becomes

d

d�z
�j

d �T

d�z

� �
¼ �a

Jc
2

�r
; (5)

where Jc

Ð 1

0
d�z=�r ¼ 1, and the boundary conditions (Eqs.

(3a) and (3b)) are

�Tð�z ¼ 0Þ ¼ 0; (6a)

�Tð�z ¼ 1Þ ¼ 0; if T1 ¼ T2;
1; if T1 6¼ T2:

�
(6b)

Equations (5) and (6) are solved to give the steady-state solu-

tion for the coupled electrical-thermal conduction. In princi-

ple, they can be solved numerically for arbitrary temperature

dependence of electrical conductivity �rð �T ; �zÞ and thermal

conductivity �jð �T ; �zÞ. We focus on several special cases that

can be of practical importance. Note that if T1 > T2, we have

T0 < 0, which means that decreasing (increasing) normal-

ized temperature �T gives increasing (decreasing) absolute

temperature T.

III. RESULTS AND DISCUSSION

Case 1: Constant electrical conductivity and linear
temperature dependent thermal conductivity

For the special case of constant electrical conductivity,

r ¼ r0, and linear temperature dependence of thermal con-

ductivity, j ¼ j0 þ j0ðT � T1Þ, we have �r ¼ 1 and

�j ¼ 1þ g �T , with g ¼ j0T0=j0. Note that g specifies the

slope of the temperature dependence of the thermal conduc-

tivity for given boundary temperatures. This case may not

sufficiently approximate physical materials in necessarily

large temperature range, but it can be solved analytically to

give a basic understanding of our model. Solving Eqs. (5)

and (6) gives

�T �zð Þ ¼

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ag�z 1� �zð Þ þ 1

p
g

if T1 ¼ T2;

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ga�z2 þ g aþ gþ 2ð Þ�z þ 1

p
g

if T1 6¼ T2:

8>>>><
>>>>:

(7a,b)

For the case of T1 ¼ T2, the temperature distribution

along the 1D conductor from Eq. (7a) is plotted in Fig. 1(a),

for various values of a and g. The maximum temperature
�Tmax is

�Tmax ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ag=4þ 1

p
g

; if T1 ¼ T2 ; (8)

which always occurs at the center of the 1D conductor

�zmax ¼ 0:5, as seen from Fig. 1(a). However, it is important

to note that the solution in Eq. (7a) becomes unphysical

when ag < �4. This happens when �T becomes such that

�j < 0 at some location (e.g., �zmax) of the 1D conductor. We

note that the absence of a steady state solution may or may

not indicate thermal runaway.26

For the case of T1 6¼ T2, the temperature distribution

along the 1D conductor from Eq. (7b) is plotted in Fig. 1(b),

for various values of a and g. When T1 6¼ T2, the maximum

temperature is found from Eq. (7b) to be

�Tmax ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

4a

� �
aþ gþ 2ð Þ2 þ 1

s

g
; if gþ 2ð Þ < jaj

1 when T1 < T2ð Þ; 0 when T1 > T2ð Þ; otherwise;

; if T1 6¼ T2

8>>>>><
>>>>>:

(9a,b)

which occurs at �zmax ¼ ðaþ gþ 2Þ=a when aðgþ 2Þ < a2, and at �zmax ¼ 0 or 1 otherwise. In the last case, the temperature

range along the 1D conductor is bounded by the temperature at two ends, ½T1; T2�.
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For T1 6¼ T2, the conditions for the existence of physical

steady-state solution in Eq. (7b) are

a � � gþ 2ð Þ2

g
; if �1 � g < 0; (10a)

a � � gþ 2ð Þ2

g
; if g > 0: (10b)

These conditions are plotted in Fig. 2, where the “Lower

Bound” corresponds to (10a) and “Bounds” to (10b). Within

the bounds shown (grey area), it is ensured that j > 0 for all

points along the 1D conductor. Outside the boundaries of

existence of solution in Fig. 2, j becomes imaginary at cer-

tain location in z. Possible resulting time-dependent solutions

include thermal runaway, oscillation, or non-periodic,

bounded variation in time. Our model so far does not answer

the question of which one occurs. These issues will be stud-

ied in the future. Note that in the limit of g! 0, the RHS of

Eq. (10) becomes �ðgþ 2Þ2=g! �4=g, which is the bound

for the case of T1 ¼ T2 (2nd sentence after Eq. (8)). This is

expected since g! 0 indicates T0 ¼ T2 � T1 ! 0; thus, the

solution asymptotically approaches that of T1 ¼ T2. In the

opposite limit of g!1, �ðgþ 2Þ2=g! �g, the bound

approaches a � �g asymptotically.

Note that as long as the electrical conductivity is a con-

stant, �r ¼ 1, the current Jc ¼ 1 is independent of the

temperature in the conductor. Thus, the potential profile is

always �Vð�zÞ ¼ �z, for both cases of T1 ¼ T2 and T1 6¼ T2, as

shown in Fig. 1.

Case 2: Linear temperature dependence of both
electrical and thermal conductivities

In this case, we assume both electrical and thermal con-

ductivities have linear temperature dependence, r ¼ r0

þr0ðT � T1Þ and j ¼ j0 þ j0ðT � T1Þ. After normalization,

we have �r ¼ 1þ n �T and �j ¼ 1þ g �T , with n ¼ r0T0=r0 and

g ¼ j0T0=j0. Since analytical treatments are no longer avail-

able, Equations (5) and (6) are solved numerically. In the

numerical calculation, the values of d �T
d�z j�z¼0 and �J are found

iteratively until the correct boundary conditions are met.

As in Case 1, there exist bounds beyond which there is

no steady state solution for Eqs. (5) and (6). These bounds

are found numerically by scanning a and g for a given n. The

results are shown in Fig. 3 for different values of n, for both

T1 ¼ T2 and T1 6¼ T2. Note that now solutions do not exist

when either �j < 0 or �r < 0. However, we limit the range of

our numerical calculation to only track down the lack of sol-

utions because of �j < 0 only, in order to compare the shifts

of the bounds with respect to those in Case 1. As seen in Fig.

3, the lower bounds experience an upper left (lower right)

shift for increasing (decreasing) value of n for both T1 ¼ T2

and T1 6¼ T2, whereas the upper bounds (which only exist for

the case T1 6¼ T2) experience an upper right shift. That is, all

the bounds shift towards a ¼ 0 as n increases. As we shall

see later (Fig. 5), increasing n will increase the maximum

temperatures in the conductor; thus, jaj has to be reduced in

order to decrease the rate of Joule heating (cf. Eq. (5)) to

ensure the existence of a steady state solution. Note that the

bounds for n ¼ 0 in Fig. 3(b) are identical to those in Fig. 2.

The temperature and electric potential distribution along

the 1D conductor calculated from Eqs. (5) and (6) is shown

in Figs. 4(a) and 4(b), for various values of a and n with

g ¼ 0. As n increases, the maximum temperature increases.

For T1 ¼ T2, the maximum temperature always occurs at the

center of the conductor �z ¼ 0:5. For T1 6¼ T2, the position

where maximum temperature occurs shifts towards �z ¼ 0:5
as n increases. (See Figs. 5 and 6 for further details on these

FIG. 1. Steady state solution �Tð�zÞ and �Vð�zÞ for (a) T1 ¼ T2 from Eq. (7a), and (b) T1 6¼ T2 from Eq. (7b), for various values of a and g in Case 1.

FIG. 2. Bounds for the existence of steady-state solution for Case 1 with

T1 6¼ T2.
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quantities.) The normalized potential profile �Vð�zÞ is not sen-

sitive to a or g. For a given a, the current Jc is plotted as a

function of n, for various values of a in Figs. 4(c) and 4(d).

The value of Jc increases with n. For n > 0, Jc increases as a
increases, whereas for n < 0, Jc decreases as a increases.

The maximum temperature �Tmax is calculated numeri-

cally for different values of a, g, and n, as shown in Fig. 5. In

all the cases, we can see that jTmaxj decreases as g increases;

this is because the increasing thermal conductivity �j will

make the generated heat conducted away more easily. jTmaxj
increases as jaj increases, since the rate of heating increases

with jaj (cf. Eq. (5)). It is also clear that jTmaxj increases as n
increases, since the current (thus the power) will increase in

the conductor because of larger electrical conductivity �r.

FIG. 3. Bounds for the existence of steady-state solution for case 2 with (a) T1 ¼ T2 and (b) T1 6¼ T2, for various values of n.

FIG. 4. Steady state solution �Tð�zÞ and �V ð�zÞ obtained from Eqs. (5) and (6) for (a) T1 ¼ T2 and (b) T1 6¼ T2, for various values of a and n for g ¼ 0. The corre-

sponding current Jc as a function of n for (c) T1 ¼ T2 and (d) T1 6¼ T2.
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Note that negative values of a correspond to T2 < T1. For

the special case of n ¼ 0, the numerical calculations in Figs.

5(a) and 5(c) give almost identical results obtained analyti-

cally from Eqs. (8) and (9).

For T1 ¼ T2, the maximum temperature always occurs

at �zmax ¼ 0:5 because of symmetry. For T1 6¼ T2, we plot

�zmax vs g in Fig. 6. It is apparent that �zmax is located in the

region of 0 � �zmax < 0.5 when a < 0 (i.e., T1 > T2), and

within 0:5 < �zmax � 1 when a > 0 (i.e., T1 < T2). �zmax

becomes closer to 0.5 (the center) as jaj increases. Also, �zmax

becomes closer to 0.5 when either g decreases or n increases.

For the special case n ¼ 0, the numerically obtained �zmax

gives almost identical results from the analytical solution,

where �zmax ( 6¼ 0; 1Þ is a linear function of g.

Case 3: Wiedemann–Franz law

The Wiedemann–Franz (WF) law6,27 is a relation

between the thermal and electrical conductivity of metals of

the form

j
r
¼ lT; (11)

FIG. 6. Location of maximum temper-

ature for various values of a and n ¼ 0

(left) and for various values of n and

a ¼ 63 (right) for T1 6¼ T2. The lines

in (a) are from analytical calculation,

and the symbols are from numerical

calculation.

FIG. 5. Maximum temperature �T max for various values of a and n ¼ 0 (left) and for various values of n and a ¼ 63 (right). Both the cases, T1 ¼ T2 (top) and

T1 6¼ T2 (bottom) were plotted. The lines in (a) and (c) are from Eqs. (8) and (9), respectively, and the symbols are from numerical calculation.
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where l � 2:44� 10�8 W X K�2 is the Lorenz number.

Further discussion on the application of WF law to various

materials may be found at Refs. 27–30. For simplicity, we

consider only the special case of T1 ¼ T2 with linear temper-

ature dependence of electrical conductivity, �r ¼ 1þ n �T .

Using the same normalization as in Section II, Eq. (11)

becomes

�j ¼ ð1þ �TÞ�r; (12)

where we have used j0=r0 ¼ lT1, with a ¼ V2
0=lT2

1 . Using

Eq. (12), Eqs. (5) and (6) may be solved numerically. The

temperature and electrical potential distributions are shown

in Fig. 7(a), for various values of a and n. It is notable that a

change in the value of n does not change the temperature and

potential profiles significantly or the maximum temperature.

The constant current Jc is plotted as a function of n, for vari-

ous values of a in Fig. 7(b). The behavior of Jc is similar to

Case 2 with linear temperature dependence of r and j, as r
is modeled the same way and the temperature profile does

not vary significantly.

Figure 8 shows the maximum temperature does not

depend on n but only on a. If the WF law holds, it is possible

to find an analytical solution for the maximum temperature

(see Appendix)

Tmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

4

r
� 1; (13)

which is independent of �rð �TÞ and �jð �TÞ, confirming our

numerical data in Fig. 8.

Case 4: Realistic experimental data for carbon
nanotube fibers and copper

We apply our theory to two examples, carbon nanotube

fibers (CNFs) and copper, with realistic temperature depen-

dent electrical conductivity rðTÞ and thermal conductivity

jðTÞ taken from experimental measurements. For CNFs, we

use rðTÞ and jðTÞ from Fig. 3 of Ref. 17 (samples A, B, and

C). The data are polynomial interpolated, as shown in Figs.

9(a) and 9(b). We then solve Eqs. (5) and (6) numerically. We

assume the length of the CNFs is L ¼ 1 lm. First, for T1 ¼
T2 ¼ 360 K, we calculate the maximum temperature Tmax as a

function of the applied voltage V0, as shown in Fig. 9(c). We

next calculate Tmax for various T2, for a fixed bias voltage of

V0 ¼ 0.63 V and T1 ¼ 360 K, as shown in Fig. 9(d). The

results are compared with those obtained for constant electri-

cal and thermal conductivities, rðTÞ ¼ r0 ¼ rðT ¼ 360 KÞ
and jðTÞ ¼ j0 ¼ jðT ¼ 360 KÞ. The constant r and j
approximation is fairly close to the actual data, for samples B

and C, but not for sample A. This is because both electrical

FIG. 7. Steady state solution (a) �Tð�zÞ
and �Vð�zÞ, and (b) Jc obtained from

Eqs. (5) and (6) for T1 ¼ T2 with

Wiedemann-Franz law assumed.

FIG. 8. The maximum temperature (a) as a function of n for various values of a; (b) as a function of a for various values of n. Solid lines are for numerical cal-

culation from Eqs. (5) and (6); dashed line is for analytical solution, Eq. (13).
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and thermal conductivities are close to constant for cases B

and C in Figs. 9(a) and 9(b). For sample A, r increases and j
decreases with temperature T. As a result, the rate of Joule

heating would increase faster than that of thermal conduction,

resulting in a larger Tmax in the conductor than that with con-

stant conductivities. Noticeably, among the three samples,

sample A had the weakest nanotube fiber alignment, the least

emission current, the largest turn on voltage for field emission,

and the smallest field enhancement factor.17 Note that our cal-

culation has ignored the radiative losses from the walls of the

carbon nanotubes.31–33

For copper, we adopt the WF law. As discussed in Case

3 above, Tmax can be found without knowing the detailed

temperature of rðTÞ and jðTÞ. For T1 ¼ T2 ¼ 300 K, the

temperature of the electrical conductivity of copper34 gives

n ¼ �0:58. Figure 10(a) shows the resulting maximum tem-

perature Tmax as a function of the applied voltage V0, for

T1 ¼ T2 ¼ 300 K. Figure 10(b) shows Tmax as a function of

T2, for a fixed bias voltage of V0 ¼ 0.63 V and T1 ¼ 300 K.

IV. SUMMARY

In this paper, we evaluate the effects of temperature

dependence of the electrical and thermal conductivities on the

Joule heating of a one-dimensional conductor, by solving the

coupled non-linear steady state electrical and thermal conduc-

tion equations. We found that there are conditions under

which no steady state solution exists. In the special case of

FIG. 9. Carbon nanotube fibers (CNFs). (a) Thermal conductivity jðTÞ and (b) electrical conductivity rðTÞ taken from samples A-C in Fig. 3 of Ref. 17. Lines in

(a) and (b) are polynomial fits to the data points. (c) Tmax as a function of V0, for T1 ¼ T2 ¼ 360 K. (d) Tmax as a function of T2, for V0 ¼ 0:63 V and T1 ¼ 360 K.

In (c) and (d), we assume L ¼ 1 lm; solid lines are for numerical calculation using jðTÞ and rðTÞ in (a) and (b), and dashed lines are for the constant approxima-

tion conductivities, rðTÞ ¼ rðT ¼ 360 KÞ and jðTÞ ¼ jðT ¼ 360 KÞ.

FIG. 10. Copper with WF law. (a) Tmax as a function of V0, for T1 ¼ T2 ¼
300 K. (b) Tmax as a function of T2, for V0 ¼ 0:63 V and T1 ¼ 300 K. L ¼
1 lm is assumed in the calculations.
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constant electrical conductivity and linear temperature depen-

dence of the thermal conductivity, we have obtained explicit

expressions for the bounds of existence of solutions. The shift-

ing of these bounds due to the introduction of linear temperature

dependence of electrical conductivity is also examined. The

temperature distribution, the maximum temperature, and its

location within the conductor are examined for various boundary

conditions. Sample calculations for carbon nanotube fibers and

copper are demonstrated. We note that the absence of a steady

state solution may indicate the occurrence of thermal runaway.

This may be a topic for future research. Additional topics

include the stability of the steady state and the effects of thermal

insulation (zero heat flux boundary condition) imposed on one

end of the sample. So far, the role of the boundaries or thermal

contacts has not been discussed in this paper. There should be

some temperature jumps at the thermal contacts, with coupling

between electrical and thermal transport, see, e.g., Ref. 35.

These couplings should also play a role in the steady state tem-

perature profile, which will be studied in the future.
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APPENDIX: DERIVATION OF Tmax WHEN
WIEDEMANN-FRANZ LAW HOLDS

For the Wiedemann-Frantz law holding, with T1 ¼ T2

we have a ¼ V2
0=sLT1, �rð0Þ ¼ �rð1Þ ¼ 1, �Tð0Þ ¼ �Tð1Þ ¼ 0.

Due to symmetry, the maximum temperature occurs at

�z ¼ 0:5, �T 0:5ð Þ ¼ Tmax ;
d �T
d�z j0:5 ¼ 0. We have

�K ¼ �rð1þ �TÞ; (A1)

d

d�z
�K

d �T

d�z

� �
¼ �a

�J
2

�r
; (A2)

ð1
0

J

�r
d�z ¼ 1: (A3)

Integrating (A2) from 0 to 1 with respect to �z and using (A3)

for the right hand side, we get

�K 1ð Þd
�T

d�z

����
1

� �K 0ð Þd
�T

d�z

����
0

¼ �a�J :

Since �Kð0Þ ¼ �Kð1Þ ¼ 1 and because of symmetry
d �T
d�z j1 ¼ �d �T

d�z j0, we get

d �T

d�z

����
0

¼ a�J

2
:

Now multiplying (A2) by 1þ �Tð Þ�r d �T
d�z and integrating, we

get

1

2
1þ �Tð Þ�r d �T

d�z

� �2

¼ �a�J
2 �T þ

�T
2

2

� �
þ c:

For �z ¼ 0:5, since d �T
d�z ¼ 0, so we get c ¼ a�J

2ðTmax þ Tmax
2

2
Þ.

Plugging in �z ¼ 0 in the above equation yields

1

2

d �T

d�z

����
0

 !2

¼ a�J
2

Tmax þ
Tmax

2

2

 !
;

a2 �J
2

4
¼ a�J

2
2Tmax þ Tmax

2
� �

;

Tmax þ 1
	 
2 ¼ a

4
þ 1;

Tmax ¼ 6

ffiffiffiffiffiffiffiffiffiffiffi
a
2
þ 1

r
� 1:

For a ¼ 0, we should have Tmax ¼ 0 so the ðþÞ sign is cho-

sen. Therefore, we obtain

Tmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
a
4
þ 1

r
� 1; (A4)

which is Eq. (13) in the main text.

1M. R. Gomez, J. C. Zier, R. M. Gilgenbach, D. M. French, W. Tang, and

Y. Y. Lau, Rev. Sci. Instrum. 79, 93512 (2008).
2L. de’ Medici, Phys. Rev. Appl. 5, 24001 (2016).
3P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Appl. Phys. 105, 114908

(2009).
4C. P�erez-Arancibia, P. Zhang, O. P. Bruno, and Y. Y. Lau, J. Appl. Phys.

116, 124904 (2014).
5R. Holm, Electric Contacts: Theory and Application, 4th ed. (Springer,

Berlin, New York, 1967).
6R. S. Timsit and A. Luttgen, Appl. Phys. Lett. 108, 121603 (2016).
7P. Zhang and Y. Y. Lau, J. Appl. Phys. 108, 44914 (2010).
8P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Appl. Phys. 109, 124910

(2011).
9P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Phys. Appl. Phys. 48,

475501 (2015).
10D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167

(2000).
11M. Pedram and S. Nazarian, Proc. IEEE 94, 1487 (2006).
12H. Kam, E. Alon, and T.-J. K. Liu, IEEE Int. Electron Devices Meet.

2010, 16.4.1–16.4.4.
13P. Zhang, Y. Y. Lau, and R. S. Timsit, IEEE Trans. Electron Devices 59,

1936 (2012).
14D. Shiffler, T. K. Statum, T. W. Hussey, O. Zhou, and P. Mardahl, in

Modern Microwave and Millimeter Wave Power Electronics (IEEE,

Piscataway, NJ, 2005), p. 691.
15G. S. Bocharov and A. V. Eletskii, Tech. Phys. 52, 498 (2007).
16W. Tang, D. Shiffler, K. Golby, M. LaCour, and T. Knowles, J. Vac. Sci.

Technol. B 30, 61803 (2012).
17S. B. Fairchild, J. Boeckl, T. C. Back, J. B. Ferguson, H. Koerner, P. T.

Murray, B. Maruyama, M. A. Lange, M. M. Cahay, N. Behabtu, C. C.

Young, M. Pasquali, N. P. Lockwood, K. L. Averett, G. Gruen, and D. E.

Tsentalovich, Nanotechnology 26, 105706 (2015).
18D. P. Hunley, S. L. Johnson, R. L. Flores, A. Sundararajan, and D. R.

Strachan, J. Appl. Phys. 113, 234306 (2013).
19S. Hertel, F. Kisslinger, J. Jobst, D. Waldmann, M. Krieger, and H. B.

Weber, Appl. Phys. Lett. 98, 212109 (2011).
20M.-H. Bae, Z.-Y. Ong, D. Estrada, and E. Pop, Nano Lett. 10, 4787 (2010).
21Q. Ma, N. M. Gabor, T. I. Andersen, N. L. Nair, K. Watanabe, T.

Taniguchi, and P. Jarillo-Herrero, Phys. Rev. Lett. 112, 247401 (2014).
22K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U.

Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya,

M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, and T. Someya, Nat.

Commun. 3, 723 (2012).
23M. J. Kang, E. Miyazaki, I. Osaka, K. Takimiya, and A. Nakao, ACS

Appl. Mater. Interfaces 5, 2331 (2013).
24J. Shane, Q. Gu, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi,

and Y. Fainman, Proc. SPIE 8980, 898027 (2014).

135105-8 Antoulinakis et al. J. Appl. Phys. 120, 135105 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  35.9.134.173 On: Wed, 05 Oct 2016

14:25:00

http://dx.doi.org/10.1063/1.2991110
http://dx.doi.org/10.1103/PhysRevApplied.5.024001
http://dx.doi.org/10.1063/1.3131844
http://dx.doi.org/10.1063/1.4896361
http://dx.doi.org/10.1063/1.4944535
http://dx.doi.org/10.1063/1.3457899
http://dx.doi.org/10.1063/1.3596759
http://dx.doi.org/10.1088/0022-3727/48/47/475501
http://dx.doi.org/10.1103/RevModPhys.72.167
http://dx.doi.org/10.1109/JPROC.2006.879797
http://dx.doi.org/10.1109/IEDM.2010.5703375
http://dx.doi.org/10.1109/TED.2012.2195317
http://dx.doi.org/10.1134/S1063784207040160
http://dx.doi.org/10.1116/1.4759254
http://dx.doi.org/10.1116/1.4759254
http://dx.doi.org/10.1088/0957-4484/26/10/105706
http://dx.doi.org/10.1063/1.4811444
http://dx.doi.org/10.1063/1.3592841
http://dx.doi.org/10.1021/nl1011596
http://dx.doi.org/10.1103/PhysRevLett.112.247401
http://dx.doi.org/10.1038/ncomms1721
http://dx.doi.org/10.1038/ncomms1721
http://dx.doi.org/10.1021/am3026163
http://dx.doi.org/10.1021/am3026163
http://dx.doi.org/10.1117/12.2057412


25P. Zhang, Q. Gu, Y. Y. Lau, and Y. Fainman, IEEE J. Quantum Electron.

52, 2000207 (2016).
26Y. Y. Lau, D. Chernin, P. Zhang, and R. M. Gilgenbach, “A voltage scale

for electro-thermal runaway,” in 2013 19th IEEE Pulsed Power
Conference PPC (2013), pp. 1–2.

27N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st ed. (Brooks

Cole, New York, 1976).
28E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, J. Appl. Phys. 101, 93710

(2007).
29T. Y. Kim, C.-H. Park, and N. Marzari, Nano Lett. 16, 2439

(2016).

30N. Wakeham, A. F. Bangura, X. Xu, J.-F. Mercure, M. Greenblatt, and N.

E. Hussey, Nat. Commun. 2, 396 (2011).
31S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett. 88,

105502 (2002).
32P. Vincent, S. T. Purcell, C. Journet, and V. T. Binh, Phys. Rev. B 66,

75406 (2002).
33J. A. Sanchez, M. P. Menguc, K. F. Hii, and R. R. Vallance,

J. Thermophys. Heat Transfer 22, 281 (2008).
34R. A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).
35J. Lombard, F. Detcheverry, and S. Merabia, J. Phys.: Condens. Matter 27,

15007 (2015).

135105-9 Antoulinakis et al. J. Appl. Phys. 120, 135105 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  35.9.134.173 On: Wed, 05 Oct 2016

14:25:00

http://dx.doi.org/10.1109/JQE.2016.2516443
http://dx.doi.org/10.1063/1.2717855
http://dx.doi.org/10.1021/acs.nanolett.5b05288
http://dx.doi.org/10.1038/ncomms1406
http://dx.doi.org/10.1103/PhysRevLett.88.105502
http://dx.doi.org/10.1103/PhysRevB.66.075406
http://dx.doi.org/10.2514/1.34165
http://dx.doi.org/10.1063/1.555614
http://dx.doi.org/10.1088/0953-8984/27/1/015007



