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It is found that the Langmuir-Blodgett solutions for the space charge limited current density, for both
cylindrical and spherical diodes, may be approximated by J,,, = (4/9)goy/(2¢/ m)(EY?/\/D) over a wide
range of parameters, where E, is the surface electric field on the cathode of the vacuum diode and D is the
anode-cathode spacing. This dependence is valid whether R,/R, is greater than or less than unity, where
R, and R, are, respectively, the anode and cathode radius. Minor empirical corrections to the above
scaling yield fitting formulas that are accurate to within 5% for 3 X 107> < R./R, < 500. An explanation
of this scaling is given. An accurate transit time model yields the Langmuir-Blodgett solutions even in the
Coulomb blockade regime for a nanogap, where the electron number may be in the single digits, and the

transit time frequency is in the THz range.
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Space-charge-limited electron flow describes the maxi-
mum current density allowed for steady-state electron
beam transport across a diode. It is central to the studies
of high current diodes, high power microwave sources,
vacuum microelectronics, and sheath physics in plasma
processing, etc. It is also of interest to the contemporary
studies of the nanogap and nanodiode. For a one-
dimensional (1D) planar diode with a gap spacing D and
gap voltage V,, the maximum steady-state current density
is governed by the 1D Child-Langmuir (CL) law [1,2],
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where e and m are, respectively, the charge and mass of the
electron, and g is the permittivity of free space. There are
extensions to this 1D classical CL law to multidimensions
[3-8], to the quantum regime [9-13], and to ultrafast
processes [14,15]. There are also related studies on the
cylindrical diode [16,17], THz sources [18], time-
dependent models [19-21], Coulomb blockade [22], and
2D electromagnetic effects [23].

The CL current may be simply approximated by
I =0Q/T, where Q = CV, is the total bound surface
charge on the cathode, C is the diode capacitance, and T
is the transit time of an electron to cross the gap subjected
only to the vacuum field [24]. This capacitance model, or
transit time model, yields a current density also given by
Eq. (1) for the planar gap, except the numerical factor 4/9
is replaced by 1/2, thus committing an error of only 12.5%
[24]. That is, we need to multiply the current density
obtained from the transit time model by the numerical
factor 8/9 to obtain the correct CL law in a planar gap.
Because of its simplicity and accuracy, this capacitance or
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transit time model is of great utility to study a short pulse
diode [14], and more recently the quantum regime [13].

It is tempting to apply the transit time model to the
cylindrical and spherical geometries that were treated by
Langmuir and Blodgett (LB) [25,26]. LB obtained the
space-charge-limited current density on the cathode of a
cylindrical diode [25],
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where S is a function of R,/R, which is tabulated numeri-
cally, and R, and R, are the radius of anode and cathode,
respectively. For the spherical diode, LB expressed 8% as
(R./R,)a? and tabulated @ numerically as a function of
R,/R. [26]. Figures 1 and 2 show, respectively, the LB
solution [Eq. (2)] for the cylindrical and spherical diode,
over a wide range of R,/R,(3 X 107> < R./R, < 500). In
these figures, we set V, = 1 V, and the inner radius of the
diode at 1 cm, whether it be the anode or cathode radius. It
is clear from Eq. (2) that, once the gap voltage and the
inner radius are fixed, J; g depends only on the radius ratio
R./R,, and J 5 at other values of gap voltage and inner
radius may be obtained accordingly.

The LB solutions are not easy to obtain, and it is highly
desirable to derive an accurate approximation with an
adequate physical picture describing their underlying scal-
ings. With the emergence of nanoparticles and nanotubes,
scaling laws in these geometries would be of interest. To
our knowledge, there is no simple analytical approximation
for the LB solution [Eq. (2)], except for a recent model [17]
that approximately solved the Poisson equation for a cy-
lindrical diode. We shall comment on Ref. [17] later in this
Letter.

© 2013 American Physical Society
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FIG. 1 (color online). Comparison between the LB law,
Eqg. (2), (solid line) and its various approximations for a cylin-
drical diode over a wide range of R./R,,. The inner radius either
R, or R, is 1 cm. The applied voltage is V, =1 V. Symbols
represent the approximate expressions: crosses for Eq. (6), the
transit time model; squares for Eq. (7); circles for Eq. (8); and
triangles for the SECM. Also plotted is the error in the approxi-
mate formulas compared with the LB law.

Since the transit time model depends only on the vac-
uum field solution in the diode, we summarize the magni-
tude of the vacuum electric field E(r) and its potential
function V(r) in the cylindrical and spherical diode,

E(r) = E.R./r, V(r) = E.R.|In(r/R,)I,

Ve =E.R.|In(R,/R,)|, cylindrical 3)
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FIG. 2 (color online).
diode.

Same as in Fig. 1, except for a spherical

whether R, > R, or R, <R,. In Egs. (3) and (4), D =
IR, — R.| is the gap separation, and the last expressions
give the relation between the gap voltage V, and the
magnitude of the vacuum electric field E, on the cathode
surface. In the planar limit, both Egs. (3) and (4) give V, =
E. X D, whereas the LB law, Eq. (2), reduces to the CL
law, Eq. (1).

In the transit time model [24], an electron is subjected to
the vacuum fields, Egs. (3) and (4), and the time of flight of
an electron across the gap (7)) is given by

R, dr

[:% Z‘/—Zﬁ; R JV(r)

where V(r) is given by Eq. (3) or Eq. (4). In writing Eq. (5),
we have used the energy conservation relation mv?/2 =
eV(r). The transit time model then yields, for both cylin-
drical and spherical diodes,

= , &)
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because the surface charge density on the cathode of a
vacuum diode is equal to goE, by Gauss’s law.

The transit-time model, Eq. (6), is presented in Figs. 1
and 2 to compare with the exact LB solutions, Eq. (2).
The percentage error in the transit-time model is shown by
the dashed-dotted curves in Figs. 1 and 2. Over much of the
ranges of R./R, that were considered by LB, these per-
centage errors greatly exceed the 12.5% error that is
incurred in the transit-time model for the planar diode [24].

The poor agreement between the transit time model and
the exact LB solutions for the cylindrical and spherical
diodes, which was also noted independently by Carter [27],
prompted us to look for a more accurate approximation to
the LB solutions, Eq. (2). We find that, over a fairly large
range of R./R,, the LB solutions may be approximated by

4 eEN?
app _580 Zﬁ:

where E, is the cathode surface electric field of a vacuum
diode that is given by Egs. (3) and (4) and D is the gap
spacing, irrespective of whether the cathode is inside or
outside the anode. Note the very different new scaling,
Eq. (7), from Eq. (2). Note also that Eq. (7) becomes the
exact CL solution, Eq. (1), in a planar cathode, for which
E.=V,/D.

The approximate solution, Eq. (7), is also presented in
Figs. 1 and 2. Its percentage error in comparison with the
exact LB model, Eq. (2), is shown by the dashed curves in
Figs. 1 and 2. These figures show that Eq. (7) is accurate to
within 30%, for 0.1 < R./R, < 500, whether the diode is
cylindrical or spherical. It is far more accurate than the
transit time model, Eq. (6), and over a much wider range
of R./R,.

J cylindrical or spherical, (7)
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Before we give a physical interpretation of Eq. (7), we
present an empirical correction to Eq. (7) that fits the exact
LB solution over the large ranges of R./R, considered by
LB [25,26],

4 eEd?
Japp = %o Eﬁ[l + F(R./R,)]

cylindrical or spherical. (8)

Here, the correction factor F within the range 3 X 1075 <
R./R, <500 is given, for a cylindrical diode, by

R\ (s = 59)(7s +23)(8s —417)7
F<R_a) - eXp[ 143742 ] O
and, for a spherical diode, by
R\ (s = 59)(9s — 37)(4s + 143)7
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where s = In[In(1 + R./R,)] and s, = In[In(2)]. Note that
F = 0 when R./R, = 1, as expected.

The improved approximate solution, Eq. (8), is also
presented in Figs. 1 and 2. Its percentage errors in com-
parison with the exact LB model, Eq. (2), are shown by the
thin, solid curves in Figs. 1 and 2. These figures show that
Eq. (8) is accurate to within 5% for 3 X 107> < R./R, <
500, whether the diode is cylindrical or spherical. Note
from Figs. 1 and 2 that, over this range of R./R,,, the LB
solution varies over many orders of magnitude.

The value of the correction factor F in Eq. (8) is small
compared with unity when the cathode is on the outside.
That is, Eq. (7) provides the dominant scaling if the cath-
ode is closer to the planar geometry relative to the anode
surface. On the other hand, if the cathode is inside and the
anode is outside at a large distance (R./R, < 1), the
cathode surface is poorly approximated by a planar surface
and the correction factor F is of order unity or larger. Thus,
the dominant scaling, Eq. (7), may be deduced by concen-
trating at the close proximity of the cathode surface, where
the local curvature effects of the cathode can be neglected,
and the anode would play a secondary role.

To qualitatively derive Eq. (7), consider a sheet of charge
leaving the cathode of a vacuum diode. If all the bound
charge on the cathode leaves then naturally the electric field
directly in front of the cathode becomes zero, and the space-
charge-limited condition applies. This charge sheet will
then be accelerated by the vacuum field, E ., that is set up
by the anode voltage, at least initially. Applying the transit
time argument to this charge sheet, as we did in our earlier
paper on a charge sheet [ 14], we note that the major portion
of the transit time is spent in the immediate neighborhood of
the cathode surface, where the electrostatic potential may
then be approximated by,V(r) = |E.(r — R,)|. Using this
V(r) in Eq. (5), we obtain the approximate transit time,

Typp = 2(mD/2¢E,)'/2. Using this approximate transit
time in Eq. (6), we obtain the approximate current density,
Japp = (8/9)&0E, /Ty, which is Eq. (7). The factor of
(8/9) is inserted here so that the transit time formulation
is identical to the CL law, Eq. (1), in the limit of a planar
diode [24]. The scaling law, Eq. (7), when applied to the
cylindrical diode, is the same as the approximate formula
published by Chen et al. [17] who also examined the region
close to the cathode surface. Chen did not consider the
spherical diode, nor did he write his approximate solution
in the general form of Eq. (7). In fact, in his derivation [17],
there was the ambiguity in the replacement of the differen-
tial distance (Ar) with the gap separation D when he
derived his Eq. (16) from his Eq. (15).

The use of the vacuum field ignores the space charge
effect that is empirically modeled by the correction factor
F in Eq. (8). To correctly include the space charge effect in
the transit time model, we inject a single electron (in the
form of an infinitesimally thin cylindrical or spherical
shell) into the diode, one at a time [22]. At time ¢t = 0,
there are N electrons located on the cathode, ready to be
injected into the gap, and the order of injection is labeled
by n =1,2,..., N. An electron (shell) is injected into the
gap only if the total electric field acting on it would initiate
an acceleration toward the anode. For the first electron to
be injected, the imposed gap voltage must exceed a thresh-
old voltage, Vy, = ¢/2C, where C is the capacitance in the
cylindrical or spherical diode. (This threshold voltage leads
to Coulomb blockade in the single-electron regime.) The
radial position of the nth electron shell, denoted as r,,(z), is
computed from the total force acting on it. The Ramo-
Shockley theorem [28,29] yields the instantaneous current
through the diode, I(¢) = dq(r)/dt, where g(t) is the in-
duced charge ¢(r) on the capacitor. For a cylindrical diode
with R, < R,, ¢(t) is given in terms of r,(r) by g(r)=
CV, +[e/In(R,/R)IXN_,In[r,(r)/R.]. The time-average
current for the N injected electrons is equal to (/) = eN /1y,
where fy is the total time measured from the first electron
n = 1 when it is injected from the cathode and the time
when the Nth electron arrives at the anode.

The current density on the cathode, calculated from
(I) = eN/1y is also presented in Figs. 1 and 2, designated
as “‘single electron capacitor model” (SECM). Its percent-
age errors in comparison with the exact LB model, Eq. (2),
are shown by the dotted curves in Figs. 1 and 2. These
figures show that SECM is accurate to within 10% in the
entire studied range of R./R,, an acceptable result in these
particle-in-cell-like simulations.

We shall next show that the LB law also applies to the
Coulomb blockade regime, i.e., to low numbers of N. In
Fig. 3, we show the normalized (I()) relative to the LB
value (solid line) for R.=100nm, D=R,— R, =
100 nm, and N =50 with E./Egs = 1.02 to 3.5. The
higher than LB value shown in the range of 1 < E./Ey, <
2, due to the Coulomb blockade effect [22], was recently
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FIG. 3. Normalized time-average current from the single elec-
tron capacitor model as a function of normalized electric field at
cathode E./Ey, for a cylindrical diode of R. = 100 nm, and gap
spacing D = R, — R. = 100 nm. The dashed lines in the
insert represent the time-average current of /(¢) (relative to the
LB solution) for E./Ey = 1.02 at N = 10 and E./E; = 3 at
N = 20.

confirmed by Griswold et al. [20] in their particle-in-cell
simulation.

The insets in Fig. 3 show the temporal evolution for the
two cases, E./Ey = 1.02 at N = 10, and E./Ey;, = 3 at
N = 20. Note that for E./Ey = 1.02, there is only one
electron transported through the gap within one transit
time, T [cf. Eq. (5)]. The subsequent electron will only
be injected into the gap while the prior electron nearly
arrives at the anode. For E,./E,, = 3, there is more than
one electron (between 0.5 and 1.5) per transit time for
which I(¢) is nonzero. Note that the inverse of the transit
time shown in Fig. 3 corresponds to a frequency range of
0.1 to 1.5 THz for D = 100 nm from E./E4 = 1.02 to 4.
The space charge effect will in general increase the vacuum
transit time by 40% or more.

This Letter presents semiempirical formulas that pro-
vide an excellent approximation to the LB solutions for
cylindrical and spherical diodes, essentially for the entire
range of R./R, that is of practical significance. The domi-
nant dependence is given by Eq. (7), which depends on the
vacuum electric field on the cathode surface and is there-
fore quite different from the well-known Child-Langmuir’s
Vg/ 2 /D? scaling given by Eq. (1). This simple dependence
given in Eq. (7) was qualitatively derived by focusing on
the approximate transit time of an electron sheet, which is
spent mostly in the immediate vicinity of the cathode. This
dominance of the vacuum field in the immediate vicinity of
the cathode surface may have some implication in the
contemporary development of electron gun codes, where
modeling of electron emission in the first numerical grid
proves most critical [30]. Corrections in the transit time

from the effects of space charge are included, down to the
Coulomb blockade regime where electrons numbered in
the single digits are present in the diode.

The interesting connections between nano-particles,
nano-cavities, Coulomb blockade, and the THz regime,
remain to be explored. This model might be extended to
the quantum regime [9,10,31], whose quantum CL law was
recently used to study the charge transfer plasmons
between two nearly touching metallic nanoparticles [32].
The proposed scaling might be useful to other space charge
dominated systems, such as optical field emission at high
field [33], organic semiconductors [34], metal-molecule-
metal junction [35], nanowires [36], and a compact high
power THz radiation source [37].
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