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ABSTRACT

This paper uses field theory to derive the exact dispersion relation of space charge waves in a two-dimensional electron gas (2DEG) located
in a dielectric or a dissimilar dielectric waveguide. It is found that the dispersion of a 2DEG can be modeled accurately using the free-elec-
tron sheet model, which is further confirmed by the almost identical polarizability of a 2DEG and of a free-electron sheet with zero drift
velocity. Transitions among the well-known 2DEG dispersion, the beam mode in vacuum electronics, and Gould–Trivelpiece mode in
plasma physics are demonstrated by varying the 2DEG density and direct current drift velocity. The effects of waveguide dimensions are
also presented. Our method is general and can be applied to find the dispersion relation of 2DEG with arbitrary drift velocity (governed by
electric field and scattering) in more complex circuits. Our study provides insight into the design of electromagnetic wave devices and
circuits involving a 2DEG.
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I. INTRODUCTION

A two-dimensional electron gas (2DEG) is formed when elec-
trons are confined to an interface between two different materials,
such as the interface in GaN-based heterostructures.1 Electrons in a
2DEG are free to move in the two in-plane dimensions, but they are
tightly confined in the third, transverse direction. As fabrication pro-
cesses2 for the GaN-based high-electron-mobility transistors
(HEMTs)3 are mature, the 2DEG density at GaN-based interfaces is
highly predictable and uniform. The interaction of a 2DEG in a
solid-state heterostructure with a surrounding slow wave circuit
holds the potential for high power THz generation and amplification.
For high-frequency operation, the traditional vacuum electron beam-
based devices would need to be scaled down to microscale dimen-
sions, where inevitable problems, such as strong external magnetic
field needed for beam confinement, stringent manufacturing, and
alignment tolerances at shorter wavelengths become increasingly
challenging. The dense 2DEG formed at material interfaces will
provide an ideally confined beam of high-density electrons, where
problems pertinent to the vacuum electron beams can be eliminated.

To utilize a 2DEG in electromagnetic wave amplifiers or
sources, it is important to understand the behavior of space charge

waves in a 2DEG.4 The dispersion of space charge waves in a
2DEG has been extensively studied in the literature.4–7 The well-
known 2DEG dispersion relation of ω2 � β (ω and β are the wave
frequency and wavenumber, respectively) was derived by Stern4

based on the self-consistent-field treatment of the response of the
electron gas, and it has since been considered as the signature of a
2DEG distinguished from waves in traditional three-dimensional
bulk materials. On the other hand, thin free-electron sheets are
widely used to model electron beams interacting with surrounding
circuits in vacuum electronics,8–15 where the beam mode is
described by ω ¼ βv0, with v0 being the electron drift velocity. The
free-electron sheet beams are often assumed to be magnetically
confined such that electrons move only along the plane of the
sheet. Thus, 2DEG at solid-state material interfaces and free-
electron sheet beam in vacuum electronics share similar signatures
with electrons being free to move in the in-plane dimensions, but
strongly confined in the transverse direction. Despite the very dif-
ferent confinement mechanisms for 2DEG (due to quantum
mechanical potential well) and the free-electron beam (due to
strong external magnetic field), they are extensively modeled using
similar approaches for device applications involving
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electromagnetic waves,16–20 including Monte Carlo particle
simulations,21–23 Boltzmann transport theory,7,24 the hydrodynamic
approach,7,25–27 and particle-in-cell (PIC) simulations.28 However,
the connection of the dispersion relations between the square-root
dependence ω2 � β of the 2DEG and the linear dependence of
ω � β of the free-electron sheet is not well understood, and it is
ambiguous if a 2DEG can be modeled as a free-electron sheet beam
to study space charge waves and their interaction with the sur-
rounding circuits. Furthermore, it is worthwhile to mention that
Stern’s theory4 for 2DEG is based on the assumption of zero drift
velocity of the electrons. In this context, there are still important
open questions regarding the 2DEG dispersion: Is Stern’s theory4

still valid for 2DEG with finite drift velocity? What is the depen-
dence of the 2DEG dispersion on electron drift velocity? For a
2DEG with a small drift velocity compared to the space charge
wave’s phase velocity, i.e., a fast space charge wave on the 2DEG
with respect to the electron drift velocity, is it possible to achieve
wave amplification? This paper attempts to address the first two
questions and provide directions that could answer the third.

In this work, we provide the exact dispersion relation for the
space charge waves (or plasma waves) in a 2DEG located inside a
dielectric or a dielectric-loaded waveguide. The results are com-
pared to those of an ideal free-electron sheet beam with an infinite
axial magnetic field. It is explicitly shown that the dispersion rela-
tion for a 2DEG can be very accurately modeled by that for a free-
electron sheet. The dependence of the dispersion relation on the
charge density, direct current (DC) drift velocity, and waveguide
dimensions is examined in detail. Transitions among the well-
known 2DEG dispersion ω2 � β, beam mode in vacuum electron-
ics ω � β, and Gould–Trivelpiece mode in plasma physics29 are
demonstrated. The results provide useful insights into utilization of
2DEGs in electromagnetic devices and circuits.

II. 2DEG INSIDE A UNIFORM DIELECTRIC

A. Dispersion relation from the polarizability of 2DEG

Consider a longitudinal total electric field ~E ¼ ŷE0eiωt�iβy

acting on a 2DEG located at x ¼ 0, as shown in Fig. 1; the induced
polarization is

~P ¼ ϵ0χe ~Eδ(x), (1)

where ϵ0 is the free space permittivity and χe is the polarizability.
By assuming T ¼ 0K, χe is obtained by Stern from the
self-consistent-field treatment of the response of 2DEG to give4

χe ¼ χ1 þ iχ2, (2a)

χ1 ¼ G 2z � C�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z � u)2 � 1

q
� Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z þ u)2 � 1

q� �
, (2b)

χ2 ¼ G D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (z � u)2

q
� Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (z þ u)2

q� �
, (2c)

C+¼ sgn(z + u), D+¼ 0 if jz + uj . 1, (2d)

C+¼ 0, D+¼ 1 if jz + uj , 1: (2e)

Here, G ¼ 2m*
ee

2Ns/(ϵ0�h
2kFβ

3), z ¼ β/(2kF), u ¼ m*
eω/(β�hkF),

where e (<0) is the electron charge, m*
e is the effective electron mass in

the 2DEG, Ns is the number of electrons per unit area, kF ¼ m*
evF/�h

is the Fermi wave vector, and vF is the Fermi velocity. The induced
charge perturbation density on the 2DEG is

σ ¼ �∇ �~P ¼ iβϵ0χe E0δ(x), (3)

where polarization in Eq. (1) due to the total electric field ~E is
used.

The presence of the perturbed charge density on the 2DEG
would induce electromagnetic fields in the surroundings of the
2DEG. In the case of a 2DEG inside a uniform dielectric as shown
in Fig. 1, the induced fields become (see Appendix A for
derivation)

Ey ¼ Ae�αxeiωt�iβy , (4a)

Ex ¼ � jβ
α
Ae�αxeiωt�iβy , (4b)

Bz ¼ jωϵr
αc2

Ae�αxeiωt�iβy , (4c)

for x . 0, and

Ey ¼ Beαxeiωt�iβy , (5a)

Ex ¼ jβ
α
Beαxeiωt�iβy , (5b)

Bz ¼ � jωϵr
αc2

Beαxeiωt�iβy , (5c)

for x , 0. In Eqs. (4) and (5), α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � ϵrω2/c2

p
, ϵr is the relative

permittivity of the dielectric, and c is the speed of light in vacuum.
The boundary condition at x ¼ 0 requires continuity of Ey . Thus,

FIG. 1. A 2DEG confined to the y–z plane inside a uniform dielectric with the
direction of space charge wave propagation arbitrarily oriented along the
y-direction.
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Eqs. (4a) and (5a) give

A ¼ B: (6)

The normal (x) component of the induced electric field has a
jump discontinuity σ/(ϵ0ϵr) at x ¼ 0 according to Gauss’s law.
Thus, Eqs. (4b) and (5b) give

� iβ
α
A� iβ

α
B ¼ σ

ϵ0ϵr
: (7)

Remembering that E0 is the longitudinal electric field experi-
enced by the 2DEG, we have from Eq. (4a),

E0 ¼ A: (8)

Equations (3) and (6)–(8) constitute four equations with four
unknowns, A, B, σ, and E0. For a nontrivial solution to exist, the
following dispersion relation must be satisfied:

2ϵr þ χe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � ϵrω2/c2

q
¼ 0, Exact, 2DEG, (9)

where the polarizability χe is given in Eq. (2). Note that Eq. (9) is
identical to Eq. (6) of Stern4 by setting the dielectric constant to be
zero. This verifies that applying the widely used field theory in
vacuum beam physics (also see Sec. II B)10,14 gives the same disper-
sion relation as treating 2DEG as an effective dielectric media. It
opens up the possibility of providing a unified field theory to
include both the 2DEG dispersion and the vacuum electronics
beam mode. As shown later, this unified theory extends the disper-
sion relation of 2DEG to nonzero drift velocities, where the well-
known ω2 � β scaling is derived only for the case of zero drift
velocity for 2DEG.

In the long wavelength limit, i.e., u � 1, Eq. (2) is simplified
to read as χe ≃ �z/u2, the dispersion relation in Eq. (9) becomes

β2 ¼ ϵr
ω2

c2
þ 2ϵrω2

ω2
a

� �2

, (10)

which is identical to Eq. (7) of Ref. 4. In Eq. (10),
ω2
a ; (e2Ns)/(m*

eϵ0). As shown later, Eq. (10) is the same as the
free-electron sheet dispersion, as in Eq. (17). In the “not so long”
wavelength limit, χe in Eq. (2) is Taylor expanded to the next order
to yield, χe ≃ � z

u2 1þ 3
4
1
u2

� �
, and Eq. (9) becomes

ω2 ¼ ω2
a

2ϵr
β þ 3

4
β2v2F , (11)

which is identical to Eq. (8) of Ref. 4 and Eq. (2.44) of Ref. 5 and is
the well-known 2DEG dispersion in the literature, showing a
square-root dependence of wave frequency on wave vector. Note
that, the same method can be used to derive the “hot-tube” disper-
sion of 2DEG for different circuit surroundings, including in a
waveguide with dissimilar dielectrics or with a slow wave structure.

An example of the dispersion relation for a 2DEG inside a
dielectric with uniform permittivity is shown in Fig. 2. It is clear

that the two limiting relations, Eqs. (10) and (11), are excellent
approximations of the exact dispersion in Eq. (9) that shows a
scaling of ω � ffiffiffi

β
p

.

B. 2DEG represented by a free-electron sheet

We next consider the representation of the 2DEG by an infini-
tesimally thin free-electron sheet, which is widely used to study
beam-circuit interaction in vacuum tubes.10,11,14,15 As shown in
Fig. 3, a longitudinal total electric field ~E ¼ ŷE0eiωt�iβy is acting on
the free-electron sheet, which is with a constant drift velocity
v0. The charge perturbation density and current perturbation
density on the beam are ρ(x, y, t) ¼ σeiωt�iβyδ(x) and ~J(x, y, t)
¼ ŷKeiωt�iβyδ(x), respectively. Linearizing the continuity equation
∇ �~J þ @ρ/@t ¼ 0 relates the surface-charge density σ and the

FIG. 3. A 2DEG represented by a free-electron sheet inside a uniform dielectric.
The free-electron sheet has a drift velocity of v0.

FIG. 2. Dispersion relation for a 2DEG in a uniform dielectric. In the calculation,
we use electron charge density Ns ¼ 2� 1017 1/m2, Fermi energy
EF ¼ 0:24 eV, temperature T ¼ 0 K, relative dielectric permittivity ϵr ¼ 10, and
effective electron mass m�

e /me ¼ 0:2, with me being the electron rest mass.
The results are calculated from the dispersion relation [Eq. (9)], the long wave-
length limit [Eq. (10)], the “not so long” wavelength limit [Eq. (11)], and the free-
electron sheet dispersion [Eq. (16)].
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surface current K by

K ¼ ωσ/β: (12)

The force law, (@/@t þ v@/@y)~v ¼ e~E/m*
e, is linearized to

obtain

i(ω� βv0)v ¼ eE0/m
*
e, (13)

and the linearized current continuity equation gives

K ¼ σv0 þ σ0v, (14)

where σ0 ¼ eNs is the unperturbed surface-charge density of the
free-electron sheet and v0 is the unperturbed drift velocity. From
Eqs. (12)–(14), we can obtain

σ ¼ ϵ0E0
ω2
aβ

i(ω� βv0)
2 : (15)

The presence of the perturbed charge density on the free-
electron sheet would induce electromagnetic fields in the surround-
ings of the sheet, which can also be described by Eqs. (4) and (5).
Following the same procedure outlined in Sec. II A, the surface-
charge density in Eq. (15) is solved together with the boundary
conditions in Eqs. (6)–(8) to give the following dispersion relation

(ω� βv0)
2 ¼ ω2

a

2ϵr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � ϵr

ω2

c2

r
, Exact, free-electron sheet: (16)

In the special case of v0 ¼ 0, Eq. (16) becomes

ω2 ¼ ω2
a

2ϵr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � ϵr

ω2

c2

r
, (17)

which is the same as Eq. (10), the 2DEG dispersion in the long
wavelength limit, derived using the polarizability of Stern.4

Equation (16) is also plotted in Fig. 2, for the case of
v0 ¼ 5000m/s, which almost overlaps with the results from a
2DEG. This suggests that the space charge waves on a 2DEG can
be modeled very accurately by the free-electron sheet model,
for finite drift velocity. In the case of a small drift velocity of v0 ¼
5000m/s (� the phase velocity of the space charge waves on the
2DEG or free-electron sheet), v0 has little effect in the dispersion
relation of the given free-electron sheet compared to the case of zero
drift velocity. Note from Fig. 2 that in the parameter regime pre-
sented, the phase velocity of the space charge waves on the 2DEG or
free electron sheet is on the order of 107 m/s, much larger than the
drift velocity of 5000 m/s. As drift velocity increases and approaches
the phase velocity of the space charge waves (e.g., in Fig. 5), the well-
known 2DEG dispersion scaling ω � ffiffiffi

β
p

will not hold anymore,
and Eq. (16) needs to be used to account for the effects of nonzero
drift velocity.

The excellent agreement between the dispersion relations from
2DEG in Eq. (9) and the free electron sheet in Eq. (16) indicates
that the perturbed charge density in the two systems matches

closely to each other. By comparing Eqs. (3) and (15), we can
obtain an expression for the polarizability of a free-electron sheet
with a drift velocity v0,

χfree-electron-sheet ¼ � ω2
a

(ω� βv0)
2 : (18)

Figure 4 shows the comparison of the polarizability for the
2DEG in Eq. (2) and the free-electron sheet in Eq. (18). The excel-
lent agreement at small v0 further confirms that 2DEG may be
modeled accurately by a free-electron sheet for the space charge
wave dispersion relation. The polarizability of the drifting free-
electron sheet can also be derived directly from the force law, as
seen in Appendix B.

The dispersion relation for space charge waves on a free-
electron sheet inside a uniform dielectric is shown in Fig. 5 for dif-
ferent drift velocities v0, calculated from Eq. (16). As DC drift
velocity increases from v0 ¼ 0 to v0 ¼ 5� 107 m/s, the dispersion
scaling changes from ω2 � β to ω � βv0, where the square-root
dependence is the well-known characteristic of the “2DEG disper-
sion,” and the linear dependence is the “beam mode” in vacuum
electronics.9,10,12 Note that the v0 ! 0 case is also known as the
Gould–Trivelpiece mode in plasma physics,19,29 which states that,
when a plasma is of finite transverse cross section, space charge
waves may propagate even in the absence of a drift motion or
thermal velocities of the plasma. Note that while a wide range of
drift velocity up to v0 ¼ 5� 107 m/s is used in Fig. 5 for theoretical
completeness, in practice, the maximum achievable drift velocity in
a 2DEG is limited by the maximum sustainable electric field in the
device, scattering, and velocity saturation.

The effect of charge density on the dispersion relation in
Eq. (16) is shown in Fig. 6. As 2DEG density Ns increases, the

FIG. 4. Comparison of the polarizability of a 2DEG [Eq. (2)] and of a free-
electron (FE) sheet for a different drift velocity v0 [Eq. (18)]. In the calculation,
we use electron charge density Ns ¼ 2� 1017 1/m2, v01 ¼ 5000m/s, and
effective electron mass m�

e /me ¼ 0:2, with me being the electron rest mass.
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dispersion curve shifts from the square-root dependence ω2 � β
(i.e., “2DEG dispersion”) to ω � βc/

ffiffiffiffiffi
ϵr

p
, which is essentially the

light line in a dielectric. This is expected because Eq. (16) can be
simplified to obtain ω � βc/

ffiffiffiffiffi
ϵr

p
in the limit of

ω2
a ; (e2Ns)/(m*

eϵ0) ! 1.

III. 2DEG INSIDE A DIELECTRIC WAVEGUIDE

We next consider a 2DEG inside a waveguide with dissimilar
dielectrics, as shown in Fig. 7. The perturbed charge density would

induce electromagnetic fields inside the waveguide. Following the
same procedure as outlined in Appendix A, the induced fields for
0 , x , a in Fig. 7 read10

Ey ¼ Asin( p1x)e
iωt�iβy , (19a)

Ex ¼ �A
jβ
p1

cos( p1x)e
iωt�iβy , (19b)

Bz ¼ A
jωϵr1
c2p1

cos( p1x)e
iωt�iβy , (19c)

with p21 ¼ ϵr1ω2/c2 � β2; and for a , x , b, the fields are

Ey ¼ Bsin[p2(x � b)]eiωt�iβy , (20a)

Ex ¼ �B
jβ
p2

cos[p2(x � b)]eiωt�iβy , (20b)

Bz ¼ B
jωϵr2
c2p2

cos[p2(x � b)]eiωt�iβy , (20c)

with p22 ¼ ϵr2ω2/c2 � β2. The dimensions a, b, and the relative per-
mittivity ϵr1 and ϵr2 of the dielectrics are defined in Fig. 7. The
boundary conditions at the perfectly conducting (PEC) plates,
namely, Ey ¼ 0 at x ¼ 0 and x ¼ b, are satisfied by Eqs. (19a)
and (20a). The boundary condition at x ¼ a requires continuity of
Ey . Thus, Eqs. (19a) and (20a) at x ¼ a give

Asin(p1a) ¼ Bsin[p2(a� b)]: (21)

The normal (x) component of the displacement field ~D ¼ ϵ~E
has a jump discontinuity because of the perturbed charge density σ
at x ¼ a according to Gauss’s law. Thus, Eqs. (19b) and (20b) give

�B
jβϵ0ϵr2

p2
cos[p2(a� b)]þ A

jβϵ0ϵr1
p1

cos( p1a) ¼ σ: (22)

FIG. 6. Dispersion relation for a free-electron sheet in a uniform dielectric for a
different charge density, calculated from Eq. (16). In the calculation, we use
v0 ¼ 5000m/s, relative dielectric permittivity ϵr ¼ 10, and effective electron
mass m�

e /me ¼ 0:2, with me being the electron rest mass.

FIG. 5. Dispersion relation for a free-electron sheet in a uniform dielectric for a
different drift velocity v0, calculated from Eq. (16). In the calculation, we use
electron charge density Ns ¼ 2� 1017 1/m2, relative dielectric permittivity
ϵr ¼ 10, and effective electron mass m�

e /me ¼ 0:2, with me being the electron
rest mass.

FIG. 7. A 2DEG inside a waveguide with dissimilar dielectrics. PEC stands for
a perfect electrical conductor.
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The tangential electric field E0 experienced by the 2DEG can
be obtained from Eq. (19a),

E0 ¼ Asin(p1a): (23)

The dispersion relation of a 2DEG in a dissimilar dielectric
waveguide in Fig. 7 can be found by combining Eqs. (21)–(23) with
the perturbed charge density from either Eq. (3) or Eq. (15), which
gives

ϵr1
p1

cot (p1a)� ϵr2
p2

cot [p2(a� b)]¼ χe,Exact, 2DEG in waveguide,

(24a)

ϵr1
p1

cot (p1a)� ϵr2
p2

cot [p2(a� b)] ¼ � ω2
a

(ω� βv0)
2 ,

Exact, free� electron sheet in wave guide, (24b)

where the polarizability χe in Eq. (24a) is given in Eq. (2), which is
applicable only for v0 ¼ 0. Note that Eq. (24b) recovers Eq. (31) of
Ref. 10 if ϵr1 ¼ ϵr2 ¼ 1. If χe ¼ 0 or ωa ¼ 0, i.e., there is no 2DEG
present, Eq. (24) reduces to the cold-tube dispersion of a dissimilar
dielectric waveguide,

ϵr1
p1

cot (p1a)� ϵr2
p2

cot [p2(a� b)] ¼ 0: (25)

Figure 8(a) shows the dispersion relation calculated from
Eq. (24a) for v0 ¼ 0 and from Eq. (24b) with a different drift veloc-
ity v0. Figure 8(b) shows the dispersion relation for different wave-
guide dimensions a. It is clear that, in the chosen parameter
regime, the space charge wave in 2DEG is a fast wave with respect
to the small constant drift velocity v0, since the space charge wave
dispersions are above their corresponding vacuum beam mode
ω ¼ βv0, indicating a faster phase velocity than v0. In all the cases
shown, because of the “fast wave” nature, there is no wave growth,
i.e., no imaginary β in the chosen set of parameters. As shown in
Fig. 8(b), comparing with 2DEG in an infinite dielectric [Eq. (16)],
the effects of waveguide walls become important only when the
dimension b ¼ 2a 	 20 μm. When a ¼ 10 μm and 5 μm, the effects
of waveguide walls are more significant in the small wavenumber
regime when β , 0:5� 106 rad/m; and its effect extends to larger
β when the waveguide dimension reduces to a ¼ 1 μm.

IV. CONCLUSION

This work derives a general dispersion relation for a 2DEG
with arbitrary drift velocity (governed by electric field and scatter-
ing). It provides a unified theory that includes the dispersion rela-
tions for 2DEG, the planar Trivelpiece–Gould mode, and the
free-electron beam mode, depending on the drift velocity and
density of the electrons. In particular, using the field theory by
consistently solving Maxwell’s equations and the 2DEG polariz-
ability, we have re-derived the exact dispersion relation for the
space charge waves (or plasma waves) for a 2DEG in a uniform
dielectric. It is found that the space charge waves on a 2DEG can
be modeled accurately using the free-electron sheet model. This is
further verified by the excellent agreement on the polarizability of
a 2DEG and a free-electron sheet with zero drift velocity.
Transitions among the well-known “2DEG dispersion” ω2 � β,
“beam mode” in vacuum electronics ω ¼ βv0, and Gould–
Trivelpiece mode in plasma physics are demonstrated by varying
the 2DEG density and DC drift velocity. The verification of the
results in various limits provides a theoretical foundation for
modeling 2DEG using the free-electron sheet model for arbitrary
electron drift velocity.

It is found that when the drift velocity is small (compared
to the phase velocity of the space charge wave), the dispersion
relation ω2 � β for 2DEG holds and the effect of drift velocity is
not important. However, as the drift velocity increases, the well-
known 2DEG dispersion scaling ω2 � β becomes invalid and the

FIG. 8. Dispersion relation for a 2DEG in a dielectric waveguide, calculated
from Eq. (24a) for v0 ¼ 0 and from Eq. (24b) for (a) different drift velocity v0,
with b ¼ 2a ¼ 20 μm, and (b) different b ¼ 2a with v0 ¼ 5000m/s. In the cal-
culation, we use electron charge density Ns ¼ 2� 1017 1/m2, relative dielectric
permittivity ϵr1 ¼ ϵr2 ¼ 10, and effective electron mass m�

e /me ¼ 0:2, with me

being the electron rest mass. Also shown are the dielectric light line,
ω ¼ βc/

ffiffiffiffi
ϵr

p
; the vacuum electronics beam mode, ω ¼ βv0; the cold-tube

waveguide mode, Eq. (25); and the dispersion relation in an infinite dielectric
(FE sheet mode), Eq. (16).
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general dispersion relation [i.e., Eqs. (16) and (24a)] needs to be
used to model the 2DEG dispersion.

The exact dispersion relation for a 2DEG in a dissimilar
dielectric waveguide is also derived. Our formulation provides a
general framework to find the dispersion relation of 2DEG of
arbitrary drift velocity with different circuit surroundings. It is
shown that space charge waves in a 2DEG are fast waves with
respect to the electron’s drift velocity. As a result, wave growth
may only be possible if 2DEG has a sufficiently large drift veloc-
ity such that the “beam mode” ω ¼ βv0 intersects with the
circuit mode. The results provide useful insights on the possible
development of electromagnetic wave amplifiers using 2DEG.
More generally, as the subject touches upon three areas, solid
state, plasma, and beam physics, our study could be useful to a
broad range of research fields and applications involving space
charge waves.

It is worthwhile to note that Eq. (16) is a quadratic equation,
implying two solutions in general, and only one is plotted in
Figs. 5, 6, and 8. Once the drift velocity gets above the free-electron
sheet’s plasma velocity, it is possible that there may be a second
wave that is slower than v0. Whether or not this possible slow
mode is physically realizable or useful in producing gain is still to
be determined.

While our results demonstrate the utilization of the free-
electron sheet model to study 2DEG, theoretically, it is still desir-
able to formulate a 2DEG dispersion relation using Stern’s
approach4 with the inclusion of drift velocity. Such a formulation
would further verify our approach in this paper. Future studies may
also consider the effects of collisions and thermal effects in the
2DEG on the space charge waves. The dispersion relations may be
compared with those from Pierce’s formulation. Our proposed for-
mulation may also be applied to study more complex circuits, such
as a nearby slow wave structure. In addition, it would be interesting
to experimentally measure the parametric dependence of the 2DEG
dispersion on the electron density and electron drift velocity pre-
dicted in the work.
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APPENDIX A: THE FIELD SOLUTION AROUND A 2DEG

The wave equation in an ideal dielectric is read as

∇2 � ϵr
c2

@2

@t2

� �
~E ¼ 0, (A1)

which has a transverse magnetic (TM) solution in the space above
and below the 2DEG in Fig. 1, assumed in the form of

~E ¼ x̂Ex(x, y, t)e
iωt�iβy�ipx þ ŷEy(x, y, t)e

iωt�iβy�ipx: (A2)

Putting the above solution Eq. (A2) into Eq. (A1), we find

p2 ¼ ϵr
c2
ω2 � β2: (A3)

Assuming the electric field decays away from the 2DEG, p

becomes imaginary, i.e., p ¼ +iα, with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � ϵrω2/c2

p
. Thus,

the field components Ex , Ey , and Bz / e+αxeiωt�iβy , where the
± sign is for the region x , 0 and x . 0, respectively. By assuming
Ey in the form of Eqs. (4a) and (5a), the solution for Ex and Bz in
Eqs. (4b), (4c), and (5b), 5(c) can be easily obtained from Ampere’s
law, ∇�~B ¼ (ϵr/c2)@~E/@t.

APPENDIX B: POLARIZABILITY OF A FREE-ELECTRON
SHEET

The force law for a free-electron sheet with a constant drift
velocity v0 is

D~s
Dt

¼~v,
D~v
Dt

¼ e
m*

e

~E, (B1)

where ~s and ~v are the displacement and velocity of the electrons
due to the electric field ~E, and D/Dt ¼ @/@t þ v0@/@y is the total
derivative. Assuming ~s, ~v, and ~E/ eiωt�iβy , from Eq. (B1), we
obtain

s ¼ � e

(ω� βv0)
2m*

e

E, (B2)

where s and E are the magnitudes of~s and ~E, respectively. The dis-
placed electrons contribute to the macroscopic polarization30 of the
free-electron sheet,

~P ¼ �NSjej~s ¼ ϵ0χ free�electron sheet
~E: (B3)

Putting Eq. (B3) into Eq. (B2), we obtain the polarizability of
the free-electron sheet,

χ free�electron�sheet ¼ � ω2
a

(ω� βv0)
2 , (B4)

where we have used ω2
a ; (e2Ns)/(m*

eϵ0). Equation (B4) is identical
to Eq. (18).
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