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Using the ideal magnetohydrodynamic model, we calculate the temporal evolution of initial ripples

on the boundaries of a planar plasma slab that is subjected to the magneto-Rayleigh-Taylor

instability. The plasma slab consists of three regions. We assume that in each region the plasma

density is constant with an arbitrary value and the magnetic field is also constant with an arbitrary

magnitude and an arbitrary direction parallel to the interfaces. Thus, the instability may be driven

by a combination of magnetic pressure and kinetic pressure. The general dispersion relation is

derived, together with the feedthrough factor between the two interfaces. The temporal evolution is

constructed from the superposition of the eigenmodes. Previously established results are recovered

in the various limits. Numerical examples are given on the temporal evolution of ripples on the

interfaces of the finite plasma slab. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4904210]

I. INTRODUCTION

Magneto-Rayleigh-Taylor instability (MRT)1–12 is

important to magnetized target fusion,13–16 wire-array

Z-pinches,17–21 and equation-of-state studies using flyer

plates22,23 or isentropic compression.24 It is also important to

the study of the crab nebulae.25 The magnetized liner inertial

fusion (MagLIF) concept, recently proposed at Sandia

National Laboratories,26–31 utilizes magnetic compression of

a cylindrical, metal liner to adiabatically compress a laser-

generated plasma. This plasma is preheated and embedded in

an axial magnetic field. The primary concern in this concept

is MRT that could disrupt the symmetry of the implo-

sion.30,31 This paper addresses several MRT properties that

could be important to the MagLIF concept but have not been

sufficiently treated analytically. In particular, we focus on

liner implosions, which may be treated as magnetically

accelerated flyer plates for large enough radius.

A general feature in MagLIF is the simultaneous pres-

ence of plasma and of magnetic fields with different orienta-

tions and magnitudes in the different regions (fuel, liner, and

vacuum), both inside the liner and exterior to the liner. The

outer surface of the liner is MRT unstable during the initial

phase of implosion, and the MRT is driven by the azimuthal

magnetic field that is produced by the liner’s axial current. In

the final stage implosion, which is designed to be high beta,

the inner interface of the liner becomes classically Rayleigh-

Taylor (RT) unstable due to deceleration,32 a result of the

increasing plasma pressure in the fusion fuel. Thus, during

the implosion, there is a conversion from magnetic pressure

driven to kinetic pressure driven instabilities. The effect of

magnetic tension, �ðk � BÞ2, will enter differently at the dif-

ferent stages of implosion. A highly compressed axial field

may inhibit growth of axial modes on the inner surface,

while significant diffusion of the drive field could stabilize

non-axisymmetric modes. In both cases, ðk � BÞ2 could be

large. In addition, the direction of the effective gravity, g,

changes sign as the liner stagnates on hot fuel. In a recent

MagLIF experiment on a cylindrical liner, Awe et al.30,31

found evidence that an embedded axial magnetic field may

have strengthened the integrity of the inner liner surface

against MRT. It is possible that the compressed axial mag-

netic field might have reduced the feedthrough factor from

the liner’s outer surface to the liner’s inner surface.8,30,31

Section V will address some possible evidence of this from

2D simulations.

The feedthrough factor measures the effect of perturba-

tion at one interface on the other interface.8,32,33 For the

most unstable eigenmode of MRT, it may be taken as the

ratio of the perturbation displacements at the two interfaces

that are obtained from the unstable mode’s eigenfunction.1,8

The MRT developed initially on the outer liner surface may

therefore “feedthrough” to the inner interface. This feed-

through could provide significant seeding for instability

growth at the inner interface when the implosion is slowed

down radially by the increasing pressure in the fusion fuel,

as mentioned in the preceding paragraph. The feedthrough

factor may be substantially reduced if the MRT perturbations

that were initiated from the outer surface cause significant

bending of a strong magnetic field at the inner surface.8
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In this paper, we construct the closed-form solution for

the evolution of surface ripples, over a finite time interval,

on a finite plasma slab using a WKBJ approach. MRT is

driven by an arbitrary combination of magnetic pressure and

fluid pressure. In each region of the finite plasma slab,

including its adjoining regions, the density may be arbitrary

and the magnetic field may have an arbitrary amplitude and

an arbitrary direction parallel to the interfaces. To potentially

account for the effect of a compressed magnetic field, we

generalize our previous work8 and assume that the plasma is

bounded by rigid, perfect conductors, as shown in Fig. 1.

Thus, the finite widths of regions I and III (h1 and h3 in Fig.

1) may vary adiabatically. This model is a substantial gener-

alization of the classical papers by Taylor,32 Kruskal and

Schwartzschild,2 Chandrasekhar,3 and Harris.1 A general dis-

persion relation for the geometry shown in Fig. 1 is obtained,

together with the feedthrough factors. From these solutions,

we integrate analytic solutions for the temporal evolution of

the initial ripples on both interfaces, and the mutual interac-

tion between them.

The closed form solution for arbitrary magnetic field,

plasma density, and kinetic pressure may be used to assess

qualitatively the severity of MRT once the temporal evolu-

tion of these equilibrium quantities are given (from numer-

ical codes, experiments, or test case studies). As the

equilibrium evolves, the MRT growth and feedthrough

also evolve accordingly. The WKBJ technique then pro-

vides an accurate evaluation of the temporal evolution of

the surface ripples on both interfaces, under the customary

assumption that the equilibrium evolves on a time scale

longer than the e-folding time of the instantaneous MRT

growth7 and the ripple amplitude remains small so that

growth remains linear. We present numerical examples on

the temporal evolution of the surface ripples under these

assumptions, using the equilibrium profile that is extracted

from the simulation code, HYDRA.34 These examples are

related to the MRT experiments by Sinars et al.7 and Awe

et al.30,31

The basic assumptions of this work follow: (1) It is an

ideal magnetohydrodynamic (MHD) model, and the fluid

is incompressible. (2) It is a linear theory. (3) It applies to

a Cartesian slab, so that the kink (m¼ 1) and sausage

mode (m¼ 0) MHD instabilities, and the Bell-Plesset

effects35,36—all due to cylindrical geometry—are absent. (4)

It is a sharp boundary model, in which both the plasma den-

sity and the magnetic field are constant and uniform within

each region (Fig. 1). (5) The plasma slab may have a finite

width in each region. On the outer boundaries, the plasma is

in contact with a rigid, perfect conductor.

In Sec. II, we describe the equilibrium model. We derive

the general dispersion relation from the second order ordi-

nary differential equation in Sec. III. An alternate derivation

using pressure balance is given in the Appendix A. In Sec.

IV, the temporal evolution of the ripples is calculated. In

Sec. V, we present the numerical examples. Concluding

remarks are given in Sec. VI. Some limiting cases of Fig. 1

are summarized in Appendix B, where we demonstrate how

such limits may be deduced from the general dispersion rela-

tion. These limits include various combinations of h1!1,

h3!1, D!1, q01 ! 0, q02 ! 0, and q03 ! 0 in Fig. 1.

II. EQUILIBRIUM

We begin with a general equilibrium of a magnetized

plasma whose mass density, fluid velocity, and magnetic

field are given by37

q0 ¼ q0ðxÞ; (1)

v0 ¼ v0ðxÞ ¼ 0; (2)

B0 ¼ By0ðxÞŷ þ Bz0ðxÞẑ: (3)

By writing Eq. (2), we consider the rest frame of the plasma,

in the event that this plasma is under constant acceleration in

the lab frame. The kinetic (fluid) pressure, p0, and magnetic

pressure, pm0, also vary with x,

p0 ¼ p0ðxÞ; (4)

pm0 ¼ pm0 xð Þ ¼ jB0 xð Þj2

2l0

� B2
0 xð Þ
2l0

: (5)

The x-dependence of q0, B0, and p0 is arbitrary; they only

need to satisfy the equilibrium condition, for all x (Ref. 37)

@

@x
p0 xð Þ þ B2

0 xð Þ
2l0

 !
¼ �q0 xð Þg: (6)

Equation (6) states that the acceleration in the lab frame,

a¼�g, may be driven by either the kinetic pressure, or mag-

netic pressure, or a combination of the two. In this paper, we

assume that g is a constant that satisfies Eq. (6). Integration

of Eq. (6) from x1 to x2 (>x1) yields

p0 x2ð Þ þ
B2

0 x2ð Þ
2l0

 !
� p0 x1ð Þ þ

B2
0 x1ð Þ
2l0

 !
¼ �

ðx2

x1

dxq0 xð Þg:

(7)

In the sharp boundary model, shown in Fig. 1, there

are three regions, I (l< x<b), II (b< x< a), and III

FIG. 1. MRT model with two interfaces at x¼ a and at x¼b. The bottom

boundary of region I (x¼l) and the top boundary of region III (x¼ g) are in

contact with a rigid, perfect conductor.
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(a< x< g). Within each region, both density q0i and mag-

netic field B0i are constant and uniform, where i¼ 1, 2, and

3. The widths of the three regions are h1, D, and h3, as shown

in Fig. 1; each of which may assume an arbitrary value from

zero to arbitrarily large. On the outer boundaries, at x¼l
and at x¼ g, the plasma is in contact with a rigid, perfect

conductor. Setting x1¼b� and to x2¼ aþ in Eq. (7), we

obtain

gq02D ¼ p0 b�ð Þ þ B2
01

2l0

" #
� p0 aþð Þ þ B2

03

2l0

" #
; (8)

where B0i ¼ jB0ij, aþ (a�) denotes the location slightly

above (below) x¼ a, with a similar designation for bþ

and b� at x¼ b, and D¼ a – b. Equation (8) states

that the weight in region II is supported by the total

pressure difference between the two interfaces, a and b
[Fig. 1]. Across the a- and b-interfaces, we have, from

Eq. (7),

p0 aþð Þ þ B2
03

2l0

¼ p0 a�ð Þ þ B2
02

2l0

; (9)

p0 bþ
� �

þ B2
02

2l0

¼ p0 b�ð Þ þ B2
01

2l0

: (10)

These two equations state that the total pressure is continu-

ous across an interface. Equations (8)–(10) describe various

types of equilibrium, briefly reviewed below.

When the upper boundary a is sufficiently far away

from the lower boundary b, Eq. (10) is the equilibrium con-

dition for the interface b. For the classical RT model, in

which a heavy fluid sets on a light fluid without any mag-

netic field, Eq. (10) becomes

p0ðbþÞ ¼ p0ðb�Þ: (11)

For the single interface problem considered by

Chandrasekar,3 Kruskal and Schwartzchild,2 the upper-half

space could be magnetic field-free; whereas the lower half

space is vacuum filled with a magnetic field. Equation (10)

becomes

p0 bþ
� �

¼ B2
01

2l0

; (12)

showing the weight being supported by the vacuum magnetic

field below. In Harris’ two-interface slab model,1 the equilib-

rium consists of B02¼B03¼ 0, q01¼ q03¼ 0 so that the

weight in region II is supported by the vacuum magnetic

field B01 in region I. The equilibrium condition Eq. (8)

reduces to

gq02D ¼
B2

01

2l0

; (13)

which directly links the gravity to the magnetic pressure that

drives MRT. In Harris’ analysis of MRT,1 the effects of

magnetic field (specifically the bending of magnetic field

line) became entangled with the gravity after he eliminated

B01 using Eq. (13). Thus, the difference between fluid pres-

sure driven or magnetic pressure driven was masked in

Harris’ treatment.8 Finally, if the magnetic field is discontin-

uous at the a-interface, there is a surface current at that

interface, whose y- and z-components, K0ya and K0za, respec-

tively, are given by

K0ya ¼ �½B0zðaþÞ � B0zða�Þ�=l0;

K0za ¼ ½B0yðaþÞ � B0yða�Þ�=l0:
(14)

Replacing a with b, Eq. (14) gives the surface current at the

b-interface.

Hereafter, we assume that the gravity, g, is an independ-

ent, pre-assigned constant which may be positive, negative,

or zero. The gravitational weight is supported either by the

fluid pressure or by the magnetic pressure, or by an arbitrary

combination of the two. The only requirement is that the

general equilibrium condition, Eq. (8), is satisfied. Equations

(11)–(13) describe the specific equilibrium commonly

treated in the literature; their stability analysis is summarized

in Appendix B.

III. PERTURBATION AND DISPERSION RELATION

We first consider a small signal perturbation on a

general equilibrium modeled by Eqs. (1)–(6). We assume

that the fluid is incompressible and is governed by the ideal

MHD equations: qð@=@tþ v � rÞv ¼ �rp þ J� B� qgx,

@q=@tþr � ðqvÞ ¼ 0, r � v ¼ 0, @B=@t ¼ r� ðv� BÞ,
and r� B ¼ l0J. The total fluid pressure, the total fluid

velocity, and the total magnetic field, for instance, are writ-

ten in the form

p ¼ p0ðxÞ þ p1ðxÞeixt�ikyy�ikzz;

v ¼ v0 þ v1 ¼ v1 � ixn1

¼ ix½n1xðxÞ; n1yðxÞ; n1zðxÞ�eixt�ikyy�ikzz;

B ¼ B0 þ B1 ¼ B0 þ ½B1xðxÞ;B1yðxÞ;B1zðxÞ�eixt�ikyy�ikzz;

(15)

where quantities with a subscript 1 are small signal quanti-

ties, and the equilibrium quantities, designated with a sub-

script 0, satisfy Eqs. (1)–(6). In Eq. (15), the perturbation

velocity, v1, is written in terms of the perturbation displace-

ment whose three components are n1x, n1y, and n1z. The most

important perturbation quantity is n1x, the x-component of

the fluid displacement (Fig. 1). By linearizing the ideal

MHD equations, one finds that n1x is governed by the eigen-

value equation3,37

@

@x
�x2q0 þ

k � B0ð Þ2

l0

" #
@n1x

@x

( )

¼ k2 �x2q0 � g
@q0

@x
þ k � B0ð Þ2

l0

" #
n1x; (16)

k ¼ kyŷ þ kzẑ; k ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

y þ k2
z

q
: (17)
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Equation (16) is the governing equation for all equilibrium

profiles that satisfy Eqs. (1)–(6). We have recently studied

the effects of magnetic shear on MRT,12 using Eq. (16).

We now consider the sharp boundary, 3-region model of

Fig. 1. We further assume that, within each region, the

density q0 and magnetic field B0 are constant and uniform.

Thus, within each region, @q0=@x ¼ 0, and Eq. (16) reduces

to the simple equation

d2n1x xð Þ
dx2

� k2n1x xð Þ ¼ 0: (18)

It should be noted that the assumption of uniform material

density in the slab configuration is only an approximation,

which allows the problem to be analytically tractable (the

assumption of uniform density and incompressibility will be

addressed in our HYDRA simulation in Sec. V below, and in

greater details in a separate paper that treats shock-induced

feedthrough). If na � n1xðaÞ and nb � n1xðbÞ designate,

respectively, the displacement at the a-interface and the

b-interface [Fig. 1], the solution to Eq. (18) in terms of na

and nb for the three regions is, by inspection,38

n1x xð Þ ¼ nb
sinh k x� lð Þ
sinh k b� lð Þ ; l < x < b region Ið Þ; (19a)

n1x xð Þ ¼ na
sinh k x� bð Þ

sinh kD
� nb

sinh k x� að Þ
sinh kD

;

b < x < a region IIð Þ; (19b)

n1x xð Þ ¼ na
sinh k x� gð Þ
sinh k a� gð Þ

; a < x < g region IIIð Þ : (19c)

In Eq. (19b), D¼ a – b is the width of region II. It is easy to

see from Eqs. (19a) and (19c) that n1x ¼ 0 at x ¼ l and at

x ¼ g, where there is a rigid boundary (Fig. 1). Clearly, n1x

is continuous at x¼ a and at x¼b in solution (19b).

There are two methods to obtain the dispersion relation

for the sharp boundary model shown in Fig. 1. In the first

method, which is presented in the main text, we use solution

(19) and integrate Eq. (16) across the a-interface to obtain

an algebraic relation between na and nb. A similar algebraic

relation between na and nb is obtained by integrating

Eq. (16) across the b-interface. For these two relations to

yield nontrivial solutions of na and nb, the dispersion rela-

tion for x is obtained. In the second method,38 which is pre-

sented in Appendix A, we express all perturbation

quantities, such as p1(x) and B1(x), in terms of n1x within

each region. The total perturbation pressure within each

region may then be expressed in terms na and nb upon using

Eq. (19). Continuity of the total perturbation pressure across

the a- and b-interface then give two algebraic equations in

two unknowns, na and nb, from which the dispersion rela-

tion follows. We have verified that these two methods yield

identical results. The first method is more straightforward

mathematically. The second method is more cumbersome,

but is more appealing physically, as all relevant perturbation

quantities are expressed in terms of n1x(x) within each

region.38

For the first method, we integrate Eq. (16) across the

a-interface to yield

�x2q0þ
k �B0ð Þ2

l0

" #
@n1x

@x

( )����
x¼aþ

x¼a�
¼�k2gq0n1xjx¼aþ

x¼a� : (20)

Upon using Eqs. (19b) and (19c) for n1x(x), and the respec-

tive equilibrium density q0 and magnetic field B0 at aþ and

a�, Eq. (20) gives the following relation between na/nb,

na=nb ¼ 1

�
coshkDþ

k � B03ð Þ2=l0 � x2q03

� �
coth kh3 þ kg q02 � q03ð Þ

k � B02ð Þ2=l0 � x2q02

sinh kD

2
4

3
5 � Fa xð Þ: (21)

Note that Fa(x) is the feedthrough factor from the b-interface to the a-interface.8 Physically, Fa(x) gives the ripple amplitude

at the a-interface when the MRT mode produces a ripple of unit amplitude at the b-interface (Fig. 1). Likewise, upon using

Eqs. (19a) and (19b) for n1x(x), and the respective equilibrium density q0 and magnetic field B0 at bþ and b�, Eq. (20) with a
replaced by b yields another relation for the feedthrough factor, na/nb,

na=nb ¼ coshkDþ
k � B01ð Þ2=l0 � x2q01

� �
coth kh1 þ kg q01 � q02ð Þ

k � B02ð Þ2=l0 � x2q02

sinh kD � Fb xð Þ: (22)

For Eq. (21) to be consistent with Eq. (22), we obtain

the dispersion relation

FaðxÞ ¼ FbðxÞ; (23)

which may be expanded out into a second degree polynomial

in x2,

Ax4 � Bx2 þ C ¼ 0; (24)

A ¼ 1þ q01

q02

q03

q02

coth kh1coth kh3

þ q01

q02

coth kh1 þ
q03

q02

coth kh3

	 

coth kD; (25)

122708-4 Weis et al. Phys. Plasmas 21, 122708 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.212.160.197 On: Wed, 17 Dec 2014 15:02:00



B ¼ 2 k � VA2ð Þ2 þ q01

q02

k � VA1ð Þ2 þ k � VA2ð Þ2
� �

coth kDcoth kh1 þ kg coth kh1 þ coth kDð Þ
h i

þq03

q02

k � VA2ð Þ2 þ k � VA3ð Þ2
� �

coth kDcoth kh3 � kg coth kh3 þ coth kDð Þ
h i

þq01

q02

q03

q02

k � VA1ð Þ2 þ k � VA3ð Þ2
� �

coth kh1coth kh3 þ kg coth kh3 � coth kh1ð Þ
h i

; (26)

C ¼ k � VA2ð Þ4 � kgð Þ2
h i

þ q01

q02

k � VA1ð Þ2coth kh1 þ kg
� �

k � VA2ð Þ2coth kDþ kg
� �h i

þq03

q02

k � VA2ð Þ2coth kD� kg
� �

k � VA3ð Þ2coth kh3 � kg
� �� �

þq01

q02

q03

q02

k � VA1ð Þ2coth kh1 þ kg
� �

k � VA3ð Þ2coth kh3 � kg
� �� �

; (27)

where VAi ¼ B0i=
ffiffiffiffiffiffiffiffiffiffiffi
l0q0i
p

is the Alfven velocity in region i,
i¼ 1, 2, 3. Note that q0iðk � VAiÞ2 ¼ ðk � B0iÞ2=l0 has a finite

limit even if q0i ! 0.

The solution to Eq. (24) gives the eigenfrequency x,

x2 ¼ 1

2A
B6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p� �

: (28)

In the ideal MHD description of the Rayleigh-Taylor insta-

bility, x2 is always real according to the energy principle.3,37

Therefore,

B2 � 4AC � 0; (29)

regardless of the value (or sign) of g, B01, B02, B03, q01, q02,

q03, ky, kz, D, h1, and h3. Instability arises if x2< 0 in Eq.

(28). Since A is always positive definite from Eq. (25), an

instability always occurs if

C < 0; (30)

regardless of the sign of B because at least one root of Eq.

(28) satisfies x2< 0. If B> 0, the inequality of Eq. (30) is

the necessary and sufficient condition for MRT instability to

occur, according to Eq. (28). We shall henceforth denote x1

the root of the most unstable mode. The other three roots of

Eq. (24) satisfy

x2 ¼ �x1; x4 ¼ �x3; (31)

since the dispersion relation Eq. (24) is a function of x2. In

Eq. (28), x2
1 and x2

3 correspond to the minus and plus sign,

respectively. Thus, the eigenfrequencies of the modes always

appear in positive and negative (6) pairs, as shown in Eq.

(31). Every eigenfrequency x is either real or imaginary.

The marginal stability condition is given by x¼ 0, at which

x2 transitions from a positive to a negative value.3,37

IV. FEEDTHROUGH FACTOR AND TEMPORAL
EVOLUTION OF INITIAL SURFACE PERTURBATIONS

When a slab of fluid is accelerated in vacuum, one sur-

face is RT unstable and the other surface is RT stable,

intuitively. Consider, for example, q01¼q03¼ 0, h1 ¼ h3

!1, and g points downward as in Fig. 1. Then the b-

interface is thought to be unstable and the a-interface is

thought to be stable. However, in the treatment of eigenmo-
des, ripples on both surfaces would grow at the same tempo-

ral factor, exp(ix1t), where x1 is the eigenfrequency with the

highest temporal growth rate. The feedthrough factor

describes how the perturbation on the unstable interface (b)

“feeds through” to the stable interface (a). This feedthrough

factor, for jx1tj 	 1, is given by

nx1 x ¼ a; t!1ð Þ
nx1 x ¼ b; t!1ð Þ ¼ Fa x1ð Þ ¼ Fb x1ð Þ; (32)

since for large time, the most unstable MRT mode (x¼x1)

becomes dominant, and Faðx1Þ ¼ Fbðx1Þ is simply the

ratio of the ripple amplitudes between the a-interface and the

b-interface for this mode [cf. Eq. (21) or (22)]. That is,

Faðx1Þ ¼ Fbðx1Þ gives the fraction of the disturbance on the

unstable interface that is transmitted to the stable interface.

In general, this feedthrough factor, Eq. (32), is exponentially

small if kD	 1, as it is roughly measured by e�kD.1,8,32,33

Examples of the feedthrough factor, together with the

asymptotic dependence for large and small kD, have

been given in Ref. 8 for this special case, q01¼q03¼ 0,

h1 ¼ h3 !1.

We next calculate the temporal evolution of the ripples

on the a- and b-interface. We assume the following initial

conditions of the ripples at the a- and b-interface at t¼ 0

(Fig. 1)

nað0Þ ¼ na0; (33a)

nbð0Þ ¼ nb0; (33b)

n0að0Þ ¼ 0; (33c)

n0bð0Þ ¼ 0; (33d)

where the prime denotes a time derivative. Thus, initially,

the sinusoidal ripples (with wavenumbers ky and kz) at the

interfaces x¼ a and x¼ b have an amplitude na0 and nb0,
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respectively, but with zero initial velocity. Since there are

four modes, x1, x2, x3, and x4, according to the dispersion

relation, Eq. (24) or (31), any surface ripple with

exp(� ikyy� ikzz) dependence may be written as a superposi-

tion of these four modes. Specifically, we may write the rip-

ple at the lower interface (x¼b) as

nbðtÞ ¼ p1eix1t þ p2e�ix1t þ p3eix3t þ p4e�ix3t; (34)

where the pi’s (i¼ 1, 2, 3, 4) are constants, and we have

used the result that the eigenfrequencies appear in (6)

pairs, Eq. (31). The coefficients p1, p2, p3, and p4 are deter-

mined from the initial conditions. Applying Eq. (22), or

Eq. (21), to each of the four modes in Eq. (34), we write

the temporal evolution of the ripple on the upper interface

(x¼ a),

naðtÞ ¼ p1Fbðx1Þeix1t þ p2Fbð�x1Þe�ix1t

þ p3Fbðx3Þeix3t þ p4Fbð�x3Þe�ix3t

¼ p1Fðx1Þeix1t þ p2Fðx1Þe�ix1t

þ p3Fðx3Þeix3t þ p4Fðx3Þe�ix3t: (35)

In Eq. (35), we have defined F(x) � Fb(x) which is an even

function of x [since Fb(x) is a function of x2, Eq. (22)], and

have used F(x1)¼Fb(x1)¼Fb(�x1)¼Fa(x1)¼Fa(�x1),

and F(x3)¼Fb(x3)¼Fb(�x3)¼Fa(x3)¼Fa(�x3). Applying

Eq. (34) to Eqs. (33b) and (33d) and also applying Eq. (35)

to Eqs. (33a) and (33c) yields four equations with four

unknowns (p1, p2, p3, and p4), which are easily solved in

terms of na0 and nb0. Equations (34) and (35) then read

nbðtÞ ¼ 2p1 cosðx1tÞ þ 2p3 cosðx3tÞ; (36a)

naðtÞ ¼ 2p1Fðx1Þ cosðx1tÞ þ 2p3Fðx3Þ cosðx3tÞ; (36b)

2p1 ¼ 2p2 ¼
nb0F x3ð Þ � na0

F x3ð Þ � F x1ð Þ
;

2p3 ¼ 2p4 ¼
�nb0F x1ð Þ þ na0

F x3ð Þ � F x1ð Þ
:

(37)

It is clear that Eq. (36) satisfies the initial condition (33) and

that the feedthrough factor from the b interface to the a inter-

face is F(x1) for the modes x ¼ 6x1, and is F(x3) for the

modes x ¼ 6x3. If the equilibrium profile is allowed to

vary slowly in time, so are the eigenfrequencies 6x1 and

6x3. The factors cos(x1t) and cos(x3t) in Eq. (36) are to be

replaced by cos(
Ð t

0
dt0x1ðt0Þ) and by cos(

Ð t
0

dt0x3ðt0Þ), respec-

tively, according to the WKBJ approximation. Good agree-

ment using this WKBJ technique was reported by Sinars

et al.7 when compared with their MRT experiments with

seeded initial perturbations on the liner surface.

Equations (36) and (37) give the temporal evolution of

the interface ripples for a specific, single wavenumber in ky

and in kz, i.e., when the Fourier spectrum of the initial

surface roughness on the a- and b-surface is a delta function

in ky and in kz. In general, the initial perturbations on the a-

and b-surface may be represented by their spatial Fourier

transforms

naðt ¼ 0; ky; kzÞ ¼ faðky; kzÞ; nbðt ¼ 0; ky; kzÞ ¼ fbðky; kzÞ:
(38)

The subsequent evolution of these surface perturbations on

the a- and b-surface is then given by superposition (in the

present linear theory)

naðtÞ ¼
ð ð

dkydkznaðt; ky; kzÞe�ikyy�ikzz;

nbðtÞ ¼
ð ð

dkydkznbðt; ky; kzÞe�ikyy�ikzz;

(39)

where naðt; ky; kzÞ and nbðt; ky; kzÞ are given by Eq. (36) in

which na0 and nb0 that appear in Eq. (37) are to be replaced

by faðky; kzÞ and fbðky; kzÞ respectively. For the special case

where faðky; kzÞ and fbðky; kzÞ are delta functions at ky and kz,

with amplitudes na0 and nb0, respectively, the general solu-

tion Eq. (39) reduces to Eq. (36). Thus, Eq. (39) gives the

exact expression for the temporal evolution of surface ripples

in Fig. 1, according to the linear theory, when the initial sur-

face ripples at the a- and b-surface are characterized by the

Fourier transforms, Eq. (38). If the equilibrium profile is

allowed to vary slowly in time, Eq. (39) remains valid under

the WKBJ approximation, in the manner discussed following

Eqs. (36) and (37).

V. NUMERICAL EXAMPLES

The Cartesian, sharp boundary model presented in this

paper (Fig. 1) is applied to two cases: one with kD 	 1 so

that the feedthrough factor is negligible (case 1), and the

other with kD of order unity, so that the feedthrough factor

can be significant (case 2). In the second case, of special in-

terest is the effect of orthogonal magnetic fields on the feed-

through factor. In both cases, we have in mind Sandia’s

cylindrical liner experiments,7 and the arbitrary Lagrangian-

Eulerian (ALE) radiation magnetohydrodynamics (RMHD)

code HYDRA34 to simulate them. The MHD package is not

currently capable of 2D planar calculations involving orthog-

onal magnetic fields. A direct comparison of the HYDRA

result with the complete Cartesian model in this paper is thus

not possible. However, we can include the planar simulation

with only a driving azimuthal (�By) field. Nevertheless, case

1, which corresponds essentially to Sinars’ experiments,7

provides an excellent blueprint to test our MRT calculations.

This approach is then adopted for case 2.

Case 1. kD 	 1, negligible feedthrough: Sinars et al.7

studied MRT growth on a cylindrical aluminum tube with an

outer radius of 3.168 mm and inner radius of 2.876 mm (a

liner thickness D¼ 292 lm), driven by an axial current of

order 20 MA in 150 ns. Axisymmetric sinusoidal perturba-

tions (with azimuthal mode number m¼ 0) were seeded on

the liner’s outer surface along the axial direction with two

axial wavelengths (kz), 400 and 200 lm, and a peak-to-valley

amplitude of 5% the wavelength (20 and 10 lm). The value

of kD¼ kzD equals to 4.59 and 9.17 for kz equal to 400 and

200 lm, respectively. The respective feedthrough factors, of

order e�kD,1,8,32,33 are 0.0102 and 0.000104; both are very

small compared with unity. In such cases, the evolution of
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any perturbations on the outer (inner) surface is essentially

independent of any perturbation evolution on the inner

(outer) surface.8,10,11 This reduces the problem to a single-

interface MRT problem, which substantially simplifies

Eqs. (24)–(27). See Appendix B 3; and Ref. 8. Moreover, the

factor kzr is much larger than unity, equal to 49.76 and

99.52, respectively, for kz equal to 400 and 200 lm, when

evaluated at the outer liner radius. Thus, the planar geometry

is an excellent approximation to evaluate the seeded MRT

perturbation on the outer surface. If nbðtÞ represents the rip-

ple amplitude on the outer liner surface (Fig. 1) and c the

fastest growing mode as determined from Eqs. (24)–(27), the

surface evolution, for the kz¼ 400 lm case, is governed by

d2nb tð Þ
dt2

¼ c2nb tð Þ ¼ kzg tð Þ � kzB01zð Þ2 þ kzB02zð Þ2

l0q02

" #
nb tð Þ;

nb 0ð Þ ¼ 20 lm; _nb 0ð Þ ¼ 0; (40)

where we include an axial magnetic field, B01z, exterior to

the liner (modeled by region I in Fig. 1) and, B02z, within the

liner (modeled by region II in Fig. 1). With m¼ 0, and

B01z¼B02z¼ 0 in Eq. (40), k � B0 ¼ 0, and k¼ kz, so the

growth is well represented by
ffiffiffiffiffiffiffi
kzg
p

, which was used by

Sinars et al.7 We note that in many cases, the density and

magnetic field may also be functions of time.

Next, we briefly describe the development of the

HYDRA simulations. For Sinars’ experiment, the liner was

machined to be azimuthally symmetric (m¼ 0), so the simu-

lation consisted of a seeded aluminum liner in cylindrical ge-

ometry (r,z) over a 1.2 mm axial extent, including two

wavelengths each of the 400 and 200 lm sinusoidal perturba-

tions. The mesh was conformed to the sinusoidal perturba-

tions, but did not include the 100 nm rms machining

roughness from experiment. The axial zoning maintained

greater than 30 zones/200 lm wavelength, and ratioed zon-

ing within the liner kept the radial resolution at �1 lm. The

simulations were driven using the load current from z1965

(roughly 20 MA in 150 ns) as determined from the load cur-

rent in Sinars et al.7 We are particularly interested in apply-

ing our model to realistic scenarios, so we made use of

SESAME EOS table 3719,42 and Quotidian- Lee-More-

Desjarlais43 (QLMD) electrical conductivities for aluminum.

However, we neglect radiation physics since this does not

play a significant role in these experiments. Later, we also

consider a case where the liner resistivity is small and con-

stant to mimic ideal MHD.

The 2D HYDRA simulations had to be distilled into

MRT amplitude data, which can be done in a number of

ways. First, the mass per unit length, mL(z), could be com-

puted for each axial height and then a Fast Fourier

Transform (FFT) could be taken of mL(z) at each simulation

time. With a large enough axial extent and resolution the am-

plitude of the FFT at 400 or 200 lm would then give the

MRT growth at that amplitude as a function of time. Due to

the limited axial extent of the simulation, this method was

not sufficiently accurate, as the amplitude was consistently

underestimated. The method settled on to determine the

MRT growth was to calculate the bubble and spike radii

directly from the simulation data. However, for a better com-

parison with the experimental data, we post-process the 2D

data using the spectral analysis code, SPECT3D44 to gener-

ate simulated radiographs, with a 6.151 keV back-lighter

with 15 lm resolution, angled 3
 off axis.45 The setup is sim-

ilar to Figure 2 from Sinars et al.7 From this new 2D data, in
lieu of an FFT, we chose a transmission contour and located

the radial position of this contour at each axial position. The

range of transmission contours showed an excellent repre-

sentation of the bubble and spike radii, the difference of

which being the MRT amplitude. Overall, the images were

quite clean and the variation in the transmission contours

was small. The 50% contour was roughly the average posi-

tion so the 2D HYDRA data in Fig. 2 were obtained using

this contour.

We next consider a general technique to determine the

input parameters for our analytic model. For the 3-region

problem shown in Fig. 1, the instantaneous quantities

assumed in each region, B01, B02, B03, q01, q02, q03, and the

remaining parameters, g, D, h1, and h3, are most easily

extracted from the 1D HYDRA data to compute nbðtÞ and

naðtÞ. A single 1D HYDRA run is fast and gives the general

liner dynamics required for our model and can be used for

any wavenumber. The goal is to determine from each simu-

lation timestep, the corresponding instantaneous eigenmodes

and feedthrough factors. The most general way to accom-

plish this using our linear model would be to directly inte-

grate Eq. (16) using the radial profile from HYDRA, but this

FIG. 2. (a) Comparison of Sinars’

experiment and analytic model,7 2D

HYDRA simulation (planar and cylin-

drical), and our analytic planar model

(Eq. (40)), for the seeded kz¼ 400 lm

perturbation. (b) An example simu-

lated radiograph (left) is compared to

an experimental radiograph7 (right) at

t¼ 63.5 ns.
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can be unduly challenging due to the noisy spatial deriva-

tives in the hydro data. Thus, our spatially uniform input pa-

rameters come from calculating average quantities from each

HYDRA timestep. Before continuing, we acknowledge a

particular challenge of using the sharp boundary model for a

diffuse liner is how to define the boundary itself.

For example, we consider how to compute q02, which

corresponds to the liner density. The bounds on the liner

from HYDRA are the Lagrangian nodes separating the liner

from vacuum, which also gives the maximum radial extent

of the liner (the thickness, D). This can be an overestimate of

the thickness depending on how diffuse the liner material

becomes or if there is significant ablation. Hence, the overall

thickness may change over time as well as the average den-

sity. With these bounds, we can simply radially average over

the liner thickness: q02 ¼
Ð rb

ra
rqðrÞdr=

Ð rb

ra
rdr. A similar pro-

cess can be performed for the other input parameters. By1

(the drive field) is taken to be the maximum value in the vac-

uum otherwise it is severely underestimated by the above

averaging. The effective g(t) can also be computed from our

equilibrium condition, Eq. (7), though in this instance, it is

not much different from the calculation in Sinars et al., as

shown in Fig. 2. With these averaged parameters, c is com-

puted and we continue to the next timestep.

Figure 2(a) shows a comparison of our complete set of

calculations along with Sinars’ data. First, we note excellent

agreement is observed between experiment, 2D simulations,

and our analytic planar model (using 1D HYDRA runs as

input as described above) indicating linear MRT growth in

the absence of feedthrough even as the amplitude of pertur-

bation growth exceeds twice the wavelength of the perturba-

tion. Second, good agreement is observed between the

Cartesian (x,z) and cylindrical (r,z) HYDRA simulations

which gives us good confidence in the applicability of our

planar model to the developing MRT, at least for the major-

ity of plotted times since the convergence is low. In future

work, we plan to examine to what radius this agreement can

be maintained. Additionally, in Fig. 2(b) we provide a com-

parison of synthetic (produced from 2D HYDRA data in cy-

lindrical geometry) and experimental7 radiographs at 63.5 ns.

This shows that HYDRA qualitatively reproduces a similar

mode structure as observed in Sinars’ experiment.

We next consider adding an axial seed magnetic field

for liner implosions on the Z-machine. The current state of

the art technology can apply up to 10 T (Bz). From both our

analytic and 2D HYDRA simulations, this field was found to

be insufficient to mitigate the exterior MRT growth for

400 lm, so we consider a 100 T case in our simulation. For

our planar analytic model, the axial field is initially uniform

throughout the problem domain (B01z¼B02z¼B03z¼B0z),

and then allowed to evolve according to 1D HYDRA simula-

tions. The exterior field (B01z) remains roughly its initial

value throughout the duration of the implosion, while the

field within the liner itself (B02z) and inner vacuum region

are compressed (B03z). For both a 10 and 100 T case, the

axial magnetic field has little effect on the implosion dynam-

ics unless the axial field is strongly compressed, which is not

the case for the time range shown.

At 100 T, the stabilization term from the magnetic field

line bending �ðkzBzÞ2=l0q0 remains larger than the destabi-

lizing MRT term kzg for a much longer period of time, while

the drive field ramps up, hence the delayed growth, as seen

in Fig. 3(a). Equation (41) illustrates this, given that the

liner is fairly thick (kD> 1), the single interface MRT

growth rate, c, is

c2 ¼
qliner � qvacð Þ
qliner þ qvac

kg� k � Bz;linerð Þ2 þ k � Bz;vacð Þ2

l0 qliner þ qvacð Þ
(41)

� kg� k � Bz;linerð Þ2 þ k � Bz;vacð Þ2

l0qliner

: (42)

However, the presence of a 100 T seed field in simulation

does not show the same level of instability reduction pre-

dicted by the analytic model, which is presented in Fig. 3(a).

Partially responsible for this discrepancy is that while the

current is increasing, the liner exterior is heating and ablating

material just as with the 0 T case. Close inspection of the 2D

HYDRA simulations shows that the magnetic field bending

is concentrated in the liner, so while there is Bz1> 0 in the

vacuum region, k � Bz1 ¼ k � Bz;vac � 0, which effectively

reduces the stabilization by 1=2 (Eq. (42)). Though the field

lines remain somewhat frozen into the liner, the field lines

easily diffuse in the highly resistive vacuum in HYDRA.

FIG. 3. MRT growth factors, solid curves are analytic model with 1D

HYDRA input, dashed curves are 2D HYDRA simulations, with given

applied axial field, for 400 lm perturbation (a) QLMD resistivity simula-

tions, (b) �ideal MHD simulations.
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Additional 2D simulations were run to obtain results for

an ideal MHD plasma. This was accomplished by setting the

liner resistivity, g, to be constant and small. For the sake of

the diffusion solver, the resistivity could not be set arbitrarily

small, but set to minimize the diffusion of the field into the

liner over only a handful of zones. The results of two such

simulations (0 T and 100 T) are shown in Fig. 3(b) as the

low g (highly conductive) case for direct comparison with

Fig. 3(a). Here, the 100 T growth is much closer to what is

expected from our analytic calculation. With the field lines

better frozen into the liner, for the low resistivity case, the

magnetic tension is greater and provides the anticipated sta-

bilization. Techniques similar to those used by Zhang12

could be used to analyze the effect of a magnetic field distri-

bution, both axial and azimuthal, in more detail. However, it

is possible that inclusion of an axial field in realistic situa-

tions might invalidate our ideal MHD assumption and care

must be taken when determining stabilization due to field

line bending.

Case 2. kD of order 1, moderate feedthrough: We

now consider two examples, both illustrating cases where

feedthrough is significant: (a) an idealized liner focusing on

the impact of a stabilizing axial field on long wavelength

feedthrough and (b) HYDRA verification of feedthrough for

various wavelengths. Originally, we intended to also calcu-

late feedthrough growth for Sinars’ data from case 1.

Although the feedthrough factor itself was expected to be

quite small (on the order of 1% for 400 lm) after about

60 ns, the product of F(x) nMRT� 1 lm which could still be

compared to our planar theory. This analysis brought an im-

portant caveat of our model to our attention. That is, the

presence of a shock developing in the liner can severely

impact feedthrough, depending upon the wavelength. The

two main problems were (1) seeding of the inner surface by

a rippled shock impact and (2) strong growth of the

Richtmyer-Meshkov instability after the shock.33 As such we

leave the detailed analysis of shocks to a future publication.

Here in example (a), we ignore this shock and consider only

the effect of a large stabilizing axial field in our planar ana-

lytic model. In example (b), we utilize a quasi-isentropic cur-

rent pulse to minimize the shock and also consider larger

wavelengths, which have larger feedthrough factors.

Example (a): We set kz¼ 1.5 mm and D¼ 292 lm, the

same liner thickness as in case 1 above. We again set ky¼ 0

(i.e., m¼ 0). In this case, kD¼ kzD¼ 1.223 and the feed-

through factor, e�kD¼ 0.294, which may be considered as

rather significant. Alternatively, we could have also reduced

the liner thickness to achieve the same feedthrough factor for

a shorter wavelength. First, we provide a nominal case with-

out an applied axial field, where we expect uninhibited

feedthrough of the outer to inner surface and then a case

including an axial field. To use the planar slab geometry

(Fig. 1) to assess the effects of a compressed axial magnetic

field on the feedthrough, we assume that h1 !1, q10¼ 0,

and B01z may be time dependent, that is, the region exterior

to the liner (region I) is unbounded, it has a very low mass

density, and assumes the initial seed of 10 T axial magnetic

field throughout. The magnetic drive is given by

B01y¼B0hðtÞ, which is the same as used in case 1. For the

liner (region II), we assume that D¼ 292 lm, q20 and B02z

are time dependent and B02y¼ 0, that is, the liner (region II)

maintains a constant thickness, while the density and mag-

netic field may compress if present, and zero azimuthal mag-

netic field. The benefit of assuming constant thickness

effectively removes the dependence on thickness and focuses

on changes only due to the Alfven terms, which may evolve

with time. Thus, we analyze incompressible MRT perturba-

tions of a liner that has undergone compression. For the cen-

ter region (region III), we assume that h3 !1, q03¼ 0,

B03y¼ 0, and B03z may be time dependent; that is, the region

inside the liner (region III) is unbounded, it also has a very

low mass density, has the axial magnetic field B03z(t) being

compressed according to the 1D HYDRA model if present,

and a zero azimuthal magnetic field B03y.

Plotted in Fig. 4(a) are the normalized growth factors, in

amplitude, from Eqs. (36) and (37) assuming there is no ini-

tial perturbation on the inner surface (na0¼ 0) and we have

converted the absolute time scale to the increase of the axial

FIG. 4. (a) Evolution of the outer surface, nb, and the initially unperturbed

“inner” surface, na, as a function of the compressing axial field for a 1.5 mm

wavelength perturbation. The initial seeded axial magnetic field is 10 T

(solid) and the 0 T case (dashed) is included at the equivalent time for each

value of Bz as determined from (b). (b) Evolution of the drive and axial mag-

netic field (in region III) as a function of time.

122708-9 Weis et al. Phys. Plasmas 21, 122708 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.212.160.197 On: Wed, 17 Dec 2014 15:02:00



field. The dashed lines are plotted at the equivalent time,

determined from 1D HYDRA, from Fig. 4(b) since Bz¼ 0.

For example, if we look at Bz,III¼ 800 T along the x-axis of

Fig. 4(a), this corresponds to very late in time if we look at

Fig. 4(b). This essentially means that we have parameterized

the zero field case as a function of the axial field of the

seeded case, since we have a mapping from time to axial

magnetic field. This is done to highlight the damping appa-

rent in Fig. 4(a) once Bz� 500 T which is a significant frac-

tion of By from Fig. 4(b) at that time. The story told by

Figure 4(a) is then that damping of the inner surface ripple

(na) occurs only once the B03z field strength is comparable to

the drive field. Generally, this requires significant compres-

sion of the seed field.8,12 It should be noted that while this

damping is occurring, g remains positive which means the

deceleration phase has not yet begun.

Figure 4 shows the growth of the inner surface over

many e-foldings. Important to keep in mind is that while the

MRT growth stays surprisingly linear for some 70 ns, for

later times, this growth becomes nonlinear and feedthrough

is more difficult to interpret as the bubble and spike structure

becomes more pronounced. Comparisons of our planar ana-

lytic model and 2D HYDRA simulations for various wave-

lengths are presented in example (b).

We can perform a similar calculation, without the axial

field, where the inner surface is seeded with the same pertur-

bation as the outer surface, na0 ¼ 6nb0, with both in and out

of phase scenarios (Fig. 5). With the perturbations in phase,

the overall feedthrough is less than with the un-seeded inner

surface, whereas the out of phase seeding has larger feed-

through than the un-seeded case. Due to the presence of four

modes, beating occurs on the ripples on the two surfaces

[Eqs. (34) and (35)]. The beating among the linear modes

before the most unstable mode dominates also occurs analo-

gously near the input of a traveling wave tube (TWT). It

gives rise to the “launching loss” during the spatial amplifi-

cation on a TWT.46 This effect is quantified in Fig. 5 where

we focus on the inner surface feedthrough alone.

Example (b): A realistic 2D simulation of a typical liner,

without machined perturbations, would start with quasi-

random surface roughness. With this type of surface,

feedthrough becomes important in the later stages of MRT

growth after short wavelength modes from the surface seed-

ing have cascaded and collected into longer wavelengths,

which have a corresponding larger feedthrough factor.

Besides increasing the liner thickness, as shown in example

(a) an axial field comparable to the drive is another way to

mitigate feedthrough.8 In pre-magnetized cylindrical implo-

sions, this situation generally occurs late in a typical current

pulse. This requires substantial resolution to model the sur-

face roughness through high compression. Such high-

resolution simulations can also artificially enhance growth

rates due to the enforced perfect correlation of short wave-

length modes.47 So we study a more ideal case, using various

seeded wavelengths, and use an artificially large axial field

to avoid large compression to study feedthrough in a more

controlled manner. The last requirement was mitigation of

shock formation, which was done by modifying the drive

current.

A quasi-isentropic current pulse was derived from the

work of Martin et al.48 by adding a moderate foot to lengthen

the pulse in time and reducing the peak current. 1D HYDRA

simulations were run, modifying the current as needed to

reduce the development of a shock. The result is the current

pulse shown in Fig. 6(a), which minimizes shock formation

until later in time. However, even with a perfectly designed

isentropic compression pulse, a finite delay time exists due

to the finite sound speed of the material. Figure 6(b) shows

the corresponding normalized inner surface growth for the

same liner as in case 1, but with four different wavelength

perturbations (200, 400, 800, and 1500 lm). The solid lines

FIG. 5. Evolution of the inner surface na(t) for k¼ 1.5 mm with three initial

seedings (top to bottom): out of phase, no seed, and in phase.

FIG. 6. (a) Current pulse reducing shock strength that drives the simulations

in (b). (b) Comparison of 2D HYDRA simulations and analytic calculations

of the inner surface feedthrough for four different wavelength perturbations.
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come from 2D HYDRA simulations and the dashed are the

analytic planar calculations. Before 260 ns, the inner surface

remains roughly at the grid resolution noise level, but at

260 ns a weak shock arrives bringing the surface perturbation

amplitude to the expected level of feedthrough. The follow-

ing growth is evidently not dominated by Richtmyer-

Meshkov instability as the scaling is not linear in time but

exponential, in accordance with feedthrough. At 360 ns, this

is not the case, as there is a fast uptick in growth correspond-

ing to large increase in the dI/dt of the pulse.

Despite this, the agreement with feedthrough scaling is

quite good for a significant portion of the pulse. The charac-

teristic wavelength dependence is clearly observed, as the

liner thickness is the same for all three simulations.

We next study the effect of an axial field. To avoid the

high convergence required to compress a 10 T seed field (and

subsequent departure from planar geometry), we initialize 2D

HYDRA simulations with a 100 and 200 T field, which keeps

the axial field on the order of the drive field for the majority

of the pulse. Figure 7 shows the reduction of inner surface

growth via 2D HYDRA simulations for an 800 lm perturba-

tion when a sufficiently strong axial field is present by taking

the ratio of the inner surface amplitude with the field to with-

out the field. This in effect plots the ratio of the instantaneous

feedthrough factors: FBz
=F0 as defined by Eq. (22) for the

dominant growing mode. Values less than one indicate feed-

through reduction, while early time ratios greater than one

correspond to the arrival of a magnetic diffusion wave from

liner compression. As the plasma is compressed, the field

lines are bent which also bends the plasma corresponding to

slightly earlier feedthrough.

Comparison with analytic theory when including an

axial field is again made difficult due to resistive effects. For

200 T, our planar theory would predict nearly zero feed-

through and once again the ideal MHD simulation shown in

Fig. 7, as the dashed curve, agrees best showing almost an

order of magnitude smaller feedthrough with the field.

Case 1 showed that in the exterior vacuum region k � Bz1 ¼
k � Bz;vac ¼ 0 otherwise MRT reduction is quite overesti-

mated. However, if we assume this to be true in region III as

well, the feedthrough factor is then independent of the axial

field (e�kDÞ, which we have just shown in Figure 7 as not

true. Even if we again set k � Bz1 ¼ 0 and keep k � Bz3 > 0,

the feedthrough calculation using Eqs. (35)–(37) still

overestimates the growth reduction. Overall, we observe

over 50% (25%) reduction in inner surface growth including

the 200 T (100 T) field from simulations. This reduction does

in fact fall with the range predicted by the planar model if

we consider only the ratio FBz
=F0 whose values span from

0.25 to 0.55, which strongly depend on the thickness as well

as g over this timescale.

Thus, our analytic model does indeed provide some

insight into feedthrough and its reduction by an axial field,

but detailed quantitative comparison is still challenging. We

have merely provided one example with one wavelength and

two axial field values to show the possibility of feedthrough

reduction. Larger feedthrough reduction was observed with

a 400 lm perturbation and we expect less feedthrough

reduction for larger wavelengths. Additional simulations are

underway to scan the full mode space and required fields for

subsequent feedthrough reduction.

In this section, we have applied our planar model to similar

conditions that would occur in a very weakly shock compressed

liner implosion and determined the inner and outer surface evo-

lutions for a number of different initial perturbations. An exam-

ple of feedthrough reduction using an axial field was presented

and opens the door for further investigation into this effect for

various initial conditions (axial fields and perturbation spec-

trum). The effect of a convergent geometry on these results will

be examined in a future publication.

We should stress that Eqs. (36) and (37) are equally

valid in cylindrical geometry, one needs only determine the

new eigenvalues and corresponding feedthrough factors.

The most important feature in the cylindrical geometry is the

coupling between the MRT mode and the kink (m¼ 1) and

sausage (m¼ 0) mode. The kink and sausage instabilities are

absent in the Cartesian model,8,37 but are the dominant insta-

bility in cylindrical geometry when g¼ 0. Nonetheless, we

have illustrated the application of our theory to some practi-

cal situations, which could be of particular use in other mag-

netically accelerated systems13,14,22–25 besides liner

implosions or Z-pinches.

VI. CONCLUDING REMARKS

The sharp boundary model given in this paper provides

a quantitative evaluation of the temporal evolution of arbi-

trary initial perturbations on the interfaces of a finite plasma

slab that is subjected to MRT. The plasma slab is bounded

by rigid, perfect conductors so that magnetic compression

may be modeled. By allowing the equilibrium to evolve, the

instantaneous growth rate may be explicitly calculated in a

WKBJ analysis, as given in Eq. (39) and explained in the dis-

cussions that follow. In the examples, we adopted such a

WKBJ analysis to Sinars’ experiments on MRT growth that

resulted from some seeded initial perturbations on the cylin-

drical liner.7 We used the data from 1D HYDRA simulation

to construct the evolving parameters in the equilibrium pro-

files that need to be specified in the slab model. The consist-

ent results obtained encouraged us to use a similar approach

to assess the effects of a compressed axial magnetic field on

the feedthrough in the liner. Our analytic results show that

the compressed axial magnetic field would have a significant

FIG. 7. Ratio of the inner liner surface amplitude with a 100 and 200 T axial

field to that of one without the axial field showing feedthrough reduction for

the majority of the times of interest. The dashed line shows the 200 T case

using an �ideal MHD approach as in case 1.
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effect on feedthrough only when it is comparable to the driv-

ing (azimuthal) magnetic field.8,12 Evidence for feedthrough

reduction via a strong axial field was shown in 2D simula-

tions. We also found that the feedthrough depends on the rel-

ative phase of the initially seeded perturbations on the two

surfaces of the liner. Overall, our model agrees well with

MRT growth from simulation even when the liner is shock

compressed while analysis of feedthrough in this situation

may require additional considerations for long wavelengths.

While the temporal evolution of general 3-D initial perturba-

tions can be calculated explicitly using Eq. (39), 3-D simula-

tions of similar initial conditions are at the edge of numerical

code capability. Equations (36) and (37) is well suited to

describing the evolution of a single well-defined mode.

Additional challenges appear when one considers how the

electrothermal instability39–41 could develop a spectrum of

growing modes which could interact and somehow give way

to much larger wavelength MRT growth that is observed

later on in these implosions.

The most serious deficiency inherent in the planar slab

model, for cylindrical implosions such as MagLIF, is that it

cannot account for the kink and sausage mode in a cylindrical

plasma column (or cylindrical liner).8 This can be proven from

Eq. (16), which shows that x2 is always real and positive if

g¼ 0, regardless of the equilibrium mass density or current

density profiles.3,37,49 For an imploding cylindrical liner, the

kink mode, the sausage mode, and the MRT mode may all be

tightly coupled. The true nature of this coupling is largely

unknown because they are all driven unstable by the same

axial current. We are currently studying the coupling between

the kink, sausage, and MRT mode using a cylindrical geome-

try. Additionally, in the present model, the feedthrough from

the b-surface to the a-surface (Fig. 1) occurs instantaneously

because the assumption of incompressibility implies an infinite

sound speed. In many implosion experiments, a shock is initi-

ated from the outer surface and the feedthrough to the inner

surface would not occur until the shock’s arrival. The analysis

of shock-induced feedthrough, using both HYDRA simulations

and analytical modeling, will be presented elsewhere.
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APPENDIX A: ALTERNATE DERIVATION OF THE
DISPERSION RELATION AND THE FEEDTHROUGH
FACTOR

In this Appendix, we outline the alternate derivation of the

dispersion relation, Eq. (24). A key step is to express all impor-

tant quantities in terms of the fluid displacement in the

x-direction, n1x, within each region, I, II, or III (Fig. 1). Within

each region, we assume that the density q0 and magnetic field

B0 is constant and uniform, and we shall drop the designation

of the individual region. The perturbation quantities are given

in the form of Eq. (15). We follow Chandrasekhar3 and the

systematic treatment by Melcher.38 We state the general results

obtained from the linearized ideal MHD equations.

In each region of Fig. 1, all perturbation quantities may

be expressed in terms of n1x. First

n1y ¼
ky

ik2

@n1x

@x
; (A1)

n1z ¼
kz

ik2

@n1x

@x
; (A2)

which give all other components of the perturbation dis-

placement in terms of n1x. Note that the incompressibility

condition, r � n1 ¼ 0, is satisfied. The perturbation magnetic

field is tied to the perturbation displacement of a perfectly

conducting fluid, yielding

B1 ¼ �iðk � B0Þn1; (A3)

which may be expressed in terms of n1x by virtue of Eqs.

(A1) and (A2). Equation (A3) gives the perturbed magnetic

pressure in terms of n1x,

pm1 xð Þ ¼ B0 � B1

l0

¼ � k � B0ð Þ2

l0k2

@n1x

@x
: (A4)

In terms of n1x, the perturbed kinetic pressure reads

p1 xð Þ ¼ q0

x2

k2

@n1x

@x
: (A5)

There is an additional pressure due to the change in the grav-

itational energy that results from n1x,

pg1ðxÞ ¼ �q0gn1x: (A6)

The total perturbation pressure, within each region, is

P1ðxÞ ¼ pm1ðxÞ þ p1ðxÞ þ pg1ðxÞ; (A7)

which is in terms of n1x using Eqs. (A4)–(A6). Since the total

perturbation pressure is continuous across the a- and b-

interface, we have

P1ðaþÞ ¼ P1ða�Þ; (A8)

P1ðbþÞ ¼ P1ðb�Þ: (A9)

Applying the solutions of n1x [Eqs. (19b) and (19c)] to Eq.

(A8), we obtain a relation between na and nb and this relation

is identical to Eq. (21). Applying the solutions of n1x [Eqs.

(19a) and (19b)] to Eq. (A9), we obtain another relation

between na and nb and this relation is identical to Eq. (22).

The dispersion relation, Eq. (23) or (24) of the text, follows.

APPENDIX B: SOME LIMITING CASES

In this Appendix, we list the values of A, B, and C in dis-

persion relation (24) for several cases of common interest. In

so doing, we also illustrate how the various interesting limits
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(e.g., q01=q02 ! 0 or1; D; h1; h3 ! 0 or1) are properly

taken. Once A, B, and C are known, the eigenfrequencies

6x1 and 6x3 are given by Eq. (28), the feedthrough factors

for the corresponding eigenmodes are given by Eq. (21) or

(22), and the temporal evolutions of the initial surface ripples

are given by Eq. (36), for the fixed value of ky and kz.

The limiting cases include (a) the familiar deep and

shallow water waves,3,38 (b) the classical Rayleigh-Taylor

instabilities,3,32,38 (c) the single-interface MRT theory of

Chandrashekhar,3 and Kruskal and Schwartzchild,2 (d)

Harris’ MRT theory for a finite slab,1,8 and (e) some geome-

tries relevant to flyer-plates experiments.22,23 These limits

correspond to the various limits of Fig. 1, by changing

the value (or sign) of g, B01, B02, B03, q01, q02, q03, D, h1,

and h3.

1. Water wave

Referring to Fig. 1, water wave limit may be recovered

when B01¼B02¼B03¼ 0, q03¼ 0, q01/q02¼ 1. Thus, from

Eqs. (25)–(27), we have

A ¼ 1þ coth kh1 coth kD; (B1)

B ¼ kgðcoth kh1 þ coth kDÞ; (B2)

C ¼ 0; (B3)

which are substituted in Eq. (24) to obtain3,38

x2 ¼ kg tanhðkðh1 þ DÞÞ; (B4a)

which is the shallow water wave with the water depth of

h1þD.

If h1þD!1, we have

x2 ¼ kg; (B4b)

which is the familiar deep water wave limit.

Alternatively, we may let B01¼B02¼B03¼ 0, q02¼q03

! 0. Thus, q03/q02¼ 1, and q01/q02 ! 1. From Eqs.

(25)–(27), we have

A ¼ 1þ q01

q02

coth kh1coth kh3

þ q01

q02

coth kh1 þ coth kh3

	 

coth kD

ffi q01

q02

coth kh1 coth kh3 þ coth kDð Þ; (B5)

B ¼ kg
q01

q02

� 1

	 

coth kDþ coth kh3ð Þ

ffi kg
q01

q02

coth kDþ coth kh3ð Þ; (B6)

C ¼ 0: (B7)

Substituting Eqs. (B5)–(B7) into Eq. (24), we obtain3,38

x2 ¼ kg tanh kh1; (B8)

which is the shallow water wave with the water depth of h1.

If h1!1, we have

x2 ¼ kg; (B9)

which is the familiar deep water wave limit.

2. Classical Rayleigh-Taylor instabilities

Instead of simply changing the sign of g in Eqs. (B8)

and (B9) to obtain the classical Rayleigh-Taylor instability,

we refer to Fig. 1, and set B01¼B02¼B03¼ 0, q01¼ 0,

q02¼q03, and D ! 1 (or h3 ! 1). Thus, from Eqs.

(25)–(27), we have

A ¼ 1þ coth kh3 coth kD; (B10)

B ¼ �kgðcoth kh3 þ coth kDÞ; (B11)

C ¼ 0; (B12)

which are substituted in Eq. (24) to get

x2 ¼ �kg tanhðkðh3 þ DÞÞ; (B13)

which gives the classical Rayleigh-Taylor instability3,32,38

with a growth rate of
ffiffiffiffiffi
kg
p

in the limit D!1; or h3 !1.

Alternatively, we may let B01¼B02¼B03¼ 0, h3 !1,

q01¼q02 ! 0. Thus, q01/q02¼ 1, and q03/q02 ! 1. From

Eqs. (25)–(27), we have

A ¼ 1þ q03

q02

coth kh1 þ coth kh1 þ
q03

q02

	 

coth kD

ffi q03

q02

coth kh1 þ coth kDð Þ; (B14)

B ¼ �kg
q03

q02

� 1

	 

coth kh1 þ coth kDð Þ

ffi �kg
q03

q02

coth kh1 þ coth kDð Þ; (B15)

C ¼ 0; (B16)

which are substituted in Eq. (24) to get

x2 ¼ �kg; (B17)

which is the classical Rayleigh-Taylor instability32 with a

growth rate of
ffiffiffiffiffi
kg
p

.

3. Single-surface MRT

In the single interface MRT problem considered by

Chandrashekhar,3 Kruskal and Schwartzchild,2 the upper

half space could be magnetic field-free, whereas the lower

half space is vacuum filled with a magnetic field. Thus, in

Fig. 1 we set B02¼B03¼ 0, q01¼ q03¼ 0, h1 ! 1, and D
!1, Eqs. (25)–(27) then give

A ¼ 1; (B18)

B ¼ q01

q02

k � VA1ð Þ2coth kD coth kh1 ¼
k � B01ð Þ2

q02l0

; (B19)
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C ¼ � kgð Þ2 þ kg
q01

q02

k � VA1ð Þ2coth kh1

¼ � kgð Þ2 þ kg
k � B01ð Þ2

q02l0

; (B20)

which are substituted in Eq. (24) to get

x2 ¼ �kgþ k � B01ð Þ2

q02l0

; (B21)

which is the single interface problem considered by

Chandrashekhar,3 Kruskal and Schwartzchild.2

4. Harris’ 2-interface slab model

Referring to Fig. 1, for the 2-interface slab problem con-

sidered by Harris,1 the weight in region 2 is supported solely

by the vacuum magnetic field B01 in region 1. As in Harris,

we set B02¼B03¼ 0, q01¼ q03¼ 0, h1 ! 1, and h3 ! 1.

Equations (25)–(27) then yield

A ¼ 1; (B22)

B ¼ k � B01ð Þ2

q02l0

coth kD; (B23)

C ¼ � kgð Þ2 þ kg
k � B01ð Þ2

q02l0

; (B24)

which recovers the Harris’ 2-interface MRT problem.1,8

Note q0iðk � VAiÞ2 ¼ ðk � B0iÞ2=l0 has been used in deriving

Eqs. (B23) and (B24) when q0i ! 0.

5. MRT on flyer plates

To mimic the MRT flyer-plates geometries22,23 in which

D, h1, and h3 may all be finite, we set q01¼q03¼ 0, and

B02¼ 0 in Fig. 1. For this case, we find

A ¼ 1; (B25)

B ¼ k � B01ð Þ2

q02l0

coth kh1 þ
k � B03ð Þ2

q02l0

coth kh3

" #
coth kD;

(B26)

C ¼ k � B01ð Þ2

q02l0

coth kh1 � kg

 !
k � B03ð Þ2

q02l0

coth kh3 þ kg

 !
:

(B27)

Note q0iðk � VAiÞ2 ¼ ðk � B0iÞ2=l0 has been used in deriving

Eqs. (B26) and (B27) when q0i ! 0. Since B> 0 in Eq.

(B26), MRT exists if and only if C< 0; and the cases for

g> 0 and g< 0 in Eq. (B27) were discussed in some details

in Ref. 8.
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