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Abstract
The current flow pattern, together with the contact resistance, is calculated analytically in a
Cartesian 3-terminal thin film contact with dissimilar materials. The resistivities and the
geometric dimensions in the individual contact members, as well as the terminal voltages, may
assume arbitrary values. We show that the current flow patterns and the contact resistance may
be conveniently decomposed into the even and odd solution. The even solution gives
exclusively and totally the current flowing from the source to the gate. The odd solution gives
exclusively and totally the current flowing from the source to the drain. Current crowding at
the edges, and current partition in different regions are displayed. The analytic solutions are
validated using a simulation code. The bounds on the variation of the contact resistance are
given. This paper may be considered as the generalization of the transmission line model and
the Kennedy–Murley model that were used extensively in the characterization of thin-film
devices. For completeness, we include the general results for the cylindrical geometry, which
are qualitatively similar to the even solution of the Cartesian geometry.

(Some figures may appear in colour only in the online journal)

1. Introduction

3-terminal thin-film contacts are ubiquitous to modern
electronic devices. They are also used extensively in
semiconductor material and device characterization [1]. Since
their characteristics determine the device performances [1, 2],
a systematic investigation of them would be of value. For
example, in the miniaturization of electronics, the effects of
current crowding and Joule heating become significant [3]. In
superconducting nanocircuits, the current crowding effects at
the 3-terminal structure are known to cause critical current
reduction [4]. Thus, it is worthwhile to quantify, in detail,
the current flow and contact resistance in 3-terminal thin film
contacts. This paper provides such a study.

The most commonly used model for thin film contacts is
the transmission line model (TLM), which was proposed by
Berger [2, 5] and by Murrmann and Widmann [6] in the 1970s.
In TLM, the 3-terminal thin film contact is approximated by a

transmission line, assuming that the conducting thin film layer
has a zero thickness. Kennedy and Murley [7] numerically
calculated the current distribution and electrical resistance for
a thin film contact, with the assumption of zero resistance for
the contact layer. Here, we relax the assumptions adopted in
the TLM model and in the Kennedy–Murley model through a
field analysis of a 3-terminal thin film geometry with arbitrary
aspect ratios and resistivity ratios (figure 1).

Motivated by the classical work on electrical contacts of
Holm [8] and Timsit [9, 10], we recently developed analytical
models to study both bulk contacts [11, 12]1 and thin film
contacts [13–15], including the effects of higher dimensions
and dissimilar materials. Simple, analytical scaling laws of
contact resistance for both bulk and thin film contacts were
proposed. The current crowding effect, which may induce
excessive ohmic heating, was studied. Our dc thin film contact
1 There was a typo in [12]. In equation (6) [12], the term −2.2281(a/b)2 in
g(b/a) should read −1.2281(a/b)2.
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Figure 1. 3-terminal Cartesian thin film contact structure of
dissimilar materials, with arbitrary terminal voltage at the three
terminals. This figure may be considered as the superposition of
figures 2 and 3.

Figure 2. Even part of the 3-terminal Cartesian thin film contact in
figure 1. This figure also represents the cylindrical geometry, where
the z-axis is the axis of rotation.

resistance calculation is extended to a thin film contact of an
arbitrary shape; it is also found to be applicable to ac bulk
contact resistance calculations [15, 16]. While this recent
analytic theory of Cartesian thin film contact is verified in
various limits and simulations, it has two major restrictions:
(1) the height of the top contact member, h1 in figure 1, is
assumed to be large compared with a, and (2) the left and right
terminals (figure 1) take on the same voltage [13–16]. This
paper relaxes these two assumptions.

The Cartesian thin film geometry is shown in figure 1.
Without loss of generality, we assume that the top terminal GH
is at zero potential. The left terminal E is at voltage VL and
the right terminal F is at voltage VR. Region I has electrical
resistivity ρ1, thickness h1, and width 2a, and region II has
electrical resistivity ρ2, thickness h2, and width 2b. All
parameters ρ1, ρ2, h1, h2, a, b (>a), VL and VR may assume
arbitrary values. The model in figure 1 may be decomposed
into two parts, the even part and the odd part. In the even
part, the voltages at both terminals E and F are held at the
same voltage +V0, as shown in figure 2, where all symbols
are defined. In the odd part, the voltage at terminal E is held
at the voltage −V ′

0 and the voltage at terminal F is held at
the opposite voltage +V ′

0, as shown in figure 3. If we set
V0 = (VR+VL)/2 and V ′

0 = (VR−VL)/2, so that V0−V ′
0 = VL,

and V0 + V ′
0 = VR, the potential and current flow solutions

in figure 1 are, respectively, the sum of the potential and of
current flow solutions in figures 2 and 3 from the superposition
principle.

This decomposition into even and odd solution is
physically significant. Let us call terminal F in figure 1 the
‘source’, terminal E the ‘drain’, and terminal GH the ‘gate’.
Then the even solution gives all of the current that is transported

Figure 3. Odd part of the 3-terminal Cartesian thin film contact in
figure 1.

to the gate, as shown in figure 2. The odd solution gives all
of the current that is transported to the drain, as shown in
figure 3, because the total current that reaches the gate is zero.
In figure 3, the current arriving at GJ is exactly cancelled by
the current leaving JH, by symmetry, making the total current
arriving at the gate GH equal to zero. Specifically, the total
current that arrives at the gate of figures 1 and 2 is simply
Igate = V0/R, where R is given by equation (1) in which R̄c(E)

is the contact resistance for the even solution that is given by
the exact expression equation (A7) and displayed graphically
in figure 5. Similarly, the total current that arrives at the
drain of figures 1 and 3 is simply Idrain = V ′

0/R, where R is
given by equation (2) in which R̄c(O) is the contact resistance
for the odd solution that is given by the exact expression
(equation (B8)) and displayed graphically in figure 8. The
total current that leaves the source is Isource = Idrain + Igate by
current conservation.

From the exact expressions of the electrostatic potentials
in regions I and II, we calculate the electric field pattern
everywhere (see figure 6 for the even solution and figure 10 for
the odd solution). For the odd solution (figure 3), the splitting
of the current that is transported to JG, across JO and across OK
is shown in figure 9. These quantities are not readily available
in simulation codes such as MAXWELL [17]2. Note that the
odd solution gives all of the current transport across the mid-
plane in figure 1 (represented by the z-axis), because the even
solution does not provide such current transport (figure 2).

For completeness, we include the cylindrical geometry of
figure 2 where the z-axis represents the axis of rotation, and
terminals E and F represent the circular anode (rim) at voltage
V0. The top electrode HG is grounded; and all parameters
ρ1, ρ2, h1, h2, a, b (>a) may assume arbitrary values. The
current flow pattern for this cylindrical geometry is also given
by figure 2 qualitatively.

In section 2, we consider the Cartesian thin film.
Section 2.1 presents the even solution and section 2.2 presents
the odd solution. For both solutions, we present the contact
resistance, its validation using the MAXWELL 2D code [17],
and its current pattern. In section 3, we consider the cylindrical
thin film, which is qualitatively similar to the even solution of
section 2.1. Concluding remarks are given in section 4, where
we outline our further generalization to a Cartesian thin film
geometry that is non-symmetrical about the z-axis in figure 1.
Only the major results will be presented in the main text. Their

2 For the present electrostatic problem, MAXWELL 2D uses automatic
meshing and finite element analysis to solve the Laplace equation.
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derivations, based on Fourier series analysis, are given in the
appendices.

2. Cartesian thin film contact

We shall first make a few general remarks concerning the even
and odd solutions shown in figures 2 and 3. (1) We used
Fourier series to solve the Laplace equation in regions I and
II, and match the boundary conditions at the interface. This
technique was described in detail in our treatment of thin-film
contacts [13] and in bulk contacts [12]. (2) If terminal E(F)
is sufficiently far from point D(A), the current flow at E(F) is
uniform and the contact or spreading resistance at the corner
C(B) is independent of b. This condition is satisfied if either
b � h2 or b � a. (3) The limit, ρ1/ρ2 → 0 at a fixed value of
h1/a, gives the same contact resistance as the limit, h1/a → 0
at a fixed value of ρ1/ρ2, because in either case, the ground at
HG is effectively placed at the interface BC. (4) For the even
case, figure 2, we have solved for the limit h1/a � 1 in [13].
This paper extends [13] to arbitrary values of h1/a. See also
point (3). (5) The odd solution for figure 3 is new, because the
boundary GJK is at zero potential in figure 3. Bearing these
points in mind for an understanding of the data, we report the
detailed results on the even and odd case in sections 2.1 and 2.2.

2.1. Even case

For the even case (figure 2), the geometry is symmetrical about
the vertical z-axis. The potential profile within the structure is
an even function of y. The current flow patterns (and the field
lines) are symmetrical about the z-axis. All current flowing
from terminals E and F ends up at the gate GH. The total
current that reaches the gate is Igate = V0/R, where R is the
resistance from terminals E and F to the gate GH and is found
to be

R = ρ2
b − a

2h2 × W
+

ρ2

4πW
R̄c(E)

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)

+ ρ1
h1

2a × W
, (1)

where W denotes the channel width in the third, ignorable
dimension that is perpendicular to the paper. In equation (1),
the first term represents the bulk resistance of the thin film
base, from A to F, and from D to E. The third term represents
the bulk resistance of the top region from BC to GH. The
second term represents the remaining constriction (or contact)
resistance, Rc(E), for region ABCD, and is expressed as
Rc = (ρ2/4πW)R̄c(E) for the even case. The normalized
R̄c(E) depends on the aspect ratios a/b, h1/a, a/h2, and on
the resistivity ratio ρ1/ρ2, as explicitly shown in equation (1).
The exact expression for R̄c(E) is derived in appendix A (see
equation (A7)). In the following analysis, we assume either
b � a or b � h2, in which case R̄c(E) is independent of
b [13]. This condition is easily satisfied according to the flow
patterns shown in figures 6 and 10. See also comment (2) in
the first paragraph of this section.

In the limit h1/a → ∞, R̄c(E) was studied in detail
in [13], and its value as a function of a/h2 at various values
of ρ1/ρ2 is shown in figure 4. The solid lines in figure 4 show

Figure 4. R̄c(E) in the limit of h1/a → ∞, for the even solution of
Cartesian thin film contact (figure 2). The solid lines represent the
synthesized scaling law (equation (A8)), symbols represent the
exact calculations (equation (A7)), and the upper and lower dashed
lines represent the limiting cases, respectively, of ρ1/ρ2 → ∞
(equation (A13)), and of ρ1/ρ2 → 0 (equation (A11)).

the new fitting formula, equation (A8) of appendix A, which
is more elegant and more accurate than the fitting formula that
was published in [13]. In the opposite limith1/a → 0, R̄c(E) is
given by equation (A15). These two equations, equations (A8)
and (A15), define the bounds on each sub-figure in figure 5.

Figure 5 shows the exact theory for R̄c(E) (see
equation (A7)) as a function of a/h2, for various ρ1/ρ2,
addressing the effect of h1/a in each sub-figure. For a given
resistivity ratio ρ1/ρ2, R̄c(E) increases as h1/a increases at
fixed a/h2. The range of R̄c(E) increases as a/h2 increases.
For each sub-figure of a given ρ1/ρ2 in figure 5, the bounds
of the curves are governed by equations (A8) and (A15), as
mentioned in the preceding paragraph. If ρ1/ρ2 is small,
as in figure 5(a) for ρ1/ρ2 = 0.01, h1/a has little effect on
R̄c(E). As ρ1/ρ2 increases, the effect h1/a on R̄c(E) is more
pronounced. The analytic theory is verified by MAXWELL 2D
simulation results [17], represented by the symbols in figure 5.

The field line equation, y = y(z), may be numerically
integrated from the first-order ordinary differential equation
dy/dz = Ey/Ez = (∂�/∂y)/(∂�/∂z) where � is given by
equation (A1). The field lines in the right half of the thin film
structure (figure 2) are shown for the special cases of ρ1/ρ2 = 1
and h1/a = 0.01 with various a/h2 in figures 6(a)–(c);
ρ1/ρ2 = 1 and a/h2 = 5 with various h1/a in figures 6(d)–
(f ); and h1/a = 0.1 and a/h2 = 5 with various ρ1/ρ2 in
figures 6(g)–(i). It is clear that as a/h2 increases, the field
lines (also the current flow lines) are more crowded towards the
constriction corner B, as shown in figures 6(a)–(c), indicating
more enhanced local heating there. As h1/a increases, the
field lines across the interface BC become more uniformly
distributed, as shown in figures 6(d)–(f ). As ρ1/ρ2 increases
in figures 6(g)–(i), the field lines become more uniformly
distributed, because the boundary BC becomes increasingly
like an equipotential with respect to region I.
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Figure 5. R̄c(E) as a function of a/h2, for ρ1/ρ2 = 0.01 (a), 0.1
(b), 1 (c), 10 (d), and 100 (e), with the effect of h1/a displayed in
each sub-figure. The solid lines represent the exact calculations
(equation (A7)), symbols represent MAXWELL 2D simulation, the
dashed lines represent equation (A8) and the dotted lines represent
equation (A15).

2.2. Odd case

For the odd case (figure 3), the geometry is also symmetrical
about the vertical z-axis. The potential profile is an odd
function of y. Thus, the entire boundary GJK is at zero
potential. All current flows from terminal F ends up at terminal
E, the drain, because there is no net current that flows into
the gate GH in figure 3. The total current that reaches the
drain (terminal E) is the same as the current that intercepts the
boundary GJK. It is therefore given by Idrain = V ′

0/R, where
R is given by

R = ρ2
b − a

h2 × W
+

ρ2

4πW
R̄c (O)

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)
, (2)

where W denotes the channel width in the third, ignorable
dimension that is perpendicular to the paper, and the rest of
the symbols have been defined in figure 3. In equation (2),
the first term represents the bulk resistance of the thin film
base, from A to F. The second term represents the remaining
constriction (or contact) resistance, Rc(O), for region AGJK.
The constriction (contact) resistance is normalized in the form
as Rc(O) = (ρ2/4πW)R̄c(O), where R̄c(O) depends on the
aspect ratiosa/b, h1/a, a/h2, and on the resistivity ratioρ1/ρ2,
as explicitly shown in equation (2). The exact expression for
R̄c(O) is derived in appendix B (see equation (B8)). In the
following analysis, we assume b � a or b � h2, in which
case R̄c(O) is independent of b [13], as in the even case.

We first consider the limiting case of h1/a → ∞. In
figure 7, the exact theory of R̄c(O) (see equation (B8)) is plotted
as a function of a/h2, for various ρ1/ρ2, in this limit. In
general, R̄c(O) increases as a/h2 increases. For a given a/h2,
R̄c(O) increases as ρ1/ρ2 increases. The range of variation
R̄c(O) increases as a/h2 increases. In the limit of ρ1/ρ2 → ∞,
region BCHG (figure 3) acts as an insulator with respect to the
base region BCEF, current flows directly from right to left, and
it is easy to show that

R̄c(O)|ρ1/ρ2→∞ = 4π
a

h2
, (3)

which is also plotted as the top dashed curve in figure 7.
Note that the exact theory for ρ1/ρ2 = 100 overlaps with
equation (3). In the opposite limit, ρ1/ρ2 → 0, region
BCHG (figure 3) acts as a perfectly conducting material with
respect to the base region BCEF. Thus, the whole constriction
interface BC is an equipotential surface, as if h1 = 0 and
the top electrode is applied directly to the interface BC for
the Cartesian geometry. This special case is analysed by Hall
using conformal mapping (see figure 35 and equation (52) of
Hall’s 1967 paper [18]), and from which R̄c(O) in the limit of
ρ1/ρ2 → 0 is given as

R̄c(O)|ρ1/ρ2→0 = 4π
a

h2
− 8 ln

[
cosh

(
π

2

a

h2

)]
, (4)

which is plotted as the bottom dashed curve in figure 7.
Note that the exact theory for ρ1/ρ2 = 0.01 overlaps with
equation (4). In the limit of ρ1/ρ2 → 0, R̄c(O) converges to
a constant value of 8 ln 2 = 5.55 for a/h2 > 2, as shown in
figure 7.
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Figure 6. Field lines calculated from equation (A1) for the right half of the even solution of the Cartesian thin film contact (figure 2), for
(a)–(c) ρ1/ρ2 = 1 and h1/a = 0.01 with various a/h2; (d)–(f ) ρ1/ρ2 = 1 and a/h2 = 5 with various h1/a; and (g)–(i) and h1/a = 0.1
and a/h2 = 5 with various ρ1/ρ2.

The vast amount of data collected from the exact
calculations allows us to synthesize a simple scaling law for
R̄c(O) as h1/a → ∞ in equation (B9), (for b � a or b � h2).
This scaling law, equation (B9), is in excellent agreement
with the exact calculation shown in figure 7 for the range
0 < ρ1/ρ2 < ∞, a/h2 < 50. Note that equation (4) also
gives the limit of h1/a → 0. See comment (3) in the lead
paragraph of section 2.

Figure 8 shows the exact theory of R̄c(O) (see
equation (B8)) as a function of a/h2, for various ρ1/ρ2,
addressing the effect of h1/a in each sub-figure. For a given
resistivity ratio ρ1/ρ2, R̄c(O) increases as h1/a increases at
fixed a/h2. The range of variation R̄c(O) increases as a/h2

increases. For each sub-figure of a given ρ1/ρ2 in figure 8, the
bounds of the curves are governed by equations (4) and (B9),
as explained in the preceding paragraph. (Equation (B9) is
not shown in figure 8 because it coincides with the top solid
line in each sub-figure.) If ρ1/ρ2 is small, as in figure 8(a)
for ρ1/ρ2 = 0.01, h1/a has little effect on R̄c(O). As ρ1/ρ2

increases, the effect of h1/a on R̄c(O) is more pronounced.
As ρ1/ρ2 increases, the curves for R̄c(O) are shifting towards

the upper bound, equation (3). The analytic calculations are
confirmed with MAXWELL 2D simulation [17], shown by the
symbols in figure 8.

From the exact expression of the potential everywhere,
equation (B1), the current distribution may be readily
evaluated. This is shown in figures 9 and 10. The
current leaving terminal F, IF, is split into three parts (GJ,
JO, OK) of the grounded boundary GJK (figure 3). The
three current fractions, IGJ/IF, IJO/IF and IOK/IF, may be
calculated from equations (B6) and (B7) of appendix B.
Examples of these current fractions as a function of a/h2

are shown in figures 9(a)–(c) for ρ1/ρ2 = 1 with varying
h1/a, and in figures 9(d)–(f ) for h1/a = 1 with varying
ρ1/ρ2. In general, IGJ/IF and IJO/IF increase as a function
of a/h2, whereas IOK/IF decrease as a function of a/h2.
For a fixed ρ1/ρ2, as h1/a increases, IGJ/IF decreases,
but IJO/IF and IOK/IF increase (figures 9(a)–(c)). For a
fixed h1/a, as ρ1/ρ2 increases, IGJ/IF and IJO/IF decrease,
but IOK/IF increases (figures 9(d)–(f )). Note that the
sum of current fraction IGJ/IF + IJO/IF + IOK/IF = 1, as
expected.
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Figure 7. R̄c(O) in the limit of h1/a → ∞, for the odd solution of
Cartesian thin film contact (figure 3). The solid lines represent the
synthesized scaling law (equation (B9)), symbols represent the exact
calculations (equation (B8)) and the upper and lower dashed lines
represent the limiting cases, respectively, of ρ1/ρ2 → ∞
(equation (3)), and of ρ1/ρ2 → 0 (equation (4)).

The field line equation, y = y(z), may be numerically
integrated from the first-order ordinary differential equation
dy/dz = Ey/Ez = (∂�/∂y)/(∂�/∂z) where � is given by
equation (B1). The field lines in the right half of the thin film
structure (figure 3) are shown for the special cases of ρ1/ρ2 = 1
and h1/a = 0.01 with various a/h2 in figures 10(a)–(c);
ρ1/ρ2 = 1 and a/h2 = 5 with various h1/a in figures 10(d)–
(f ); and h1/a = 0.1 and a/h2 = 5 with various ρ1/ρ2 in
figures 10(g)–(i). It is clear that as a/h2 increases, the field
lines (also the current flow lines) are more crowded towards the
constriction corner B, as shown in figures 10(a)–(c), indicating
more enhanced local heating. For small h1/a (figure 10(f )),
GJ is about to touch the interface OB, and the fringe fields at
corner B provide severe current crowding. As h1/a increases,
the field lines across the interface OB become more uniformly
distributed, as shown in figures 10(e) and (d). As h1/a further
increases (not shown), the region from BO to GJ becomes more
resistive, and the current flows mostly across the vertical axis
JO and OK. This explains the trend shown in figures 10(d)–
(f ). As ρ1/ρ2 increases, the field lines across the interface BO
in region BOJG become more uniformly distributed, as shown
in figures 10(g)–(i). As ρ1/ρ2 further increases, as shown in
figure 10(g), region BOJG becomes more resistive, resulting in
current flows across the vertical interface OK. This behaviour
is again consistent with the current fraction results shown in
figure 9(f ).

3. Circular thin film contact

For the circular thin film contact that is also represented in
figure 2, the top terminal GH is grounded and the rim of the
circular disc (E and F) is biased at V0. Comments (1)–(3) at
the beginning of section 2 also apply to the circular thin film
contact. All current flowing from the circular rim EF ends
up at the gate GH. The total current that reaches the gate is

Figure 8. R̄c(O) as a function of a/h2, for ρ1/ρ2 = 0.01 (a), 0.1
(b), 1 (c), 10 (d), and 100 (e), with the effect of h1/a displayed in
each sub-figure. The solid lines represent the exact calculations
(equation (B8)), symbols represent MAXWELL 2D simulation, the
dashed–dotted lines represent equation (3), and dotted lines
represent equation (4).
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Figure 9. Current fractions of the odd solution of figure 3, as a function of a/h2, (a)–(c) for ρ1/ρ2 = 1 with varying h1/a, (d)–(f ) for
h1/a = 1 with varying ρ1/ρ2.

Igate = V0/R, where R is the resistance from the circular rim
E(F) to the gate GH and is found to be

R = ρ2

2πh2
ln

(
b

a

)
+

ρ2

4a
R̄c

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)
+

ρ1h1

πa2
. (5)

In equation (5), the first term represents the bulk resistance
of the thin film in region II, exterior to the constriction
region ABCD [13, 15, 19]. The third term represents the
bulk resistance of the top cylinder, BCHG. The second term
represents the remaining constriction resistance, Rc, for region
ABCD, and is expressed as Rc = (ρ2/4a)R̄c for the circular
case. The normalized R̄c depends on the aspect ratios a/b,
h1/a, a/h2, and on the resistivity ratio ρ1/ρ2, as explicitly
shown in equation (5). The exact expression for R̄c is derived
in appendix C (see equation (C6)). Again, we assume b � a

or b � h2, in which case R̄c is independent of b [13], as
explained for the Cartesian case.

The cylindrical R̄c (see equation (C6)) for the limiting case
of h1/a → ∞ has been studied in detail in [13], which was
fitted to a simple scaling law (equation (C7) of appendix C),
plotted as a function of a/h2 at various values of ρ1/ρ2 in
figure 11. This scaling law is more accurate than the one
given in [13]. In the opposite limit h1/a → 0, R̄c is given by
equation (C10). These two equations (C7) and (C10), define
the bounds on each sub-figure in figure 12. Figure 12 shows the
exact theory of R̄c (see equation (C6)) as a function of a/h2,
for various ρ1/ρ2, and h1/a, which exhibits similar properties
to the even solution of the Cartesian case (figure 5). The
calculations are confirmed with MAXWELL 2D simulation

results [17], shown by the symbols in figure 12. We found
that the electric field patterns for this cylindrical case are very
similar to figure 6, a property anticipated from a previous
paper [15].

4. Concluding remarks

This paper presents accurate analytical models on 3-terminal
thin film contact with dissimilar materials. The models assume
arbitrary geometric dimensions and arbitrary resistivities in
the individual contact members, as well as arbitrary terminal
voltages. The general Cartesian 3-terminal thin film contact
is decomposed into the even and odd cases, both of which
are solved exactly by the series expansion method. The even
solution gives exclusively the current flowing from the source
to the gate. The odd solution gives exclusively the current
flowing from the source to the drain. Both the current
flow patterns and the contact resistances are calculated. The
contact resistances are validated against the MAXWELL code.
Current partition in different regions is also calculated. Our
analysis implies that the highest current density occurs at
the contact corner (point B in figure 1) on the ‘source’ side,
indicating the highest power density dissipation and therefore
the hottest temperature spot there. The bounds on the variation
of the contact resistance are obtained for both the even and odd
solutions. No general scaling laws have been constructed for
figures 5, 8 and 12, despite our considerable efforts, due to
the huge parameter space. The bounds on these figures were
established, however.
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Figure 10. Field lines calculated from equation (B1) for the right half of the odd solution of the Cartesian thin film contact (figure 3), for
(a)–(c) ρ1/ρ2 = 1 and h1/a = 0.01 with various a/h2; (d)–(f ) ρ1/ρ2 = 1 and a/h2 = 5 with various h1/a; and (g)–(i) and h1/a = 0.1
and a/h2 = 5 with various ρ1/ρ2.

Figure 11. R̄c in the limit of h1/a → ∞, for circular thin film
contact (figure 2). The curves represent the synthesized scaling law
(equation (C7)).

In figure 1, the current flow at terminal F is assumed
to be uniform, an assumption easily satisfied from the flow
patterns displayed in figures 6 and 10. We now extend the
y-coordinate of terminal F to a new position F’, say, at y = b′,
while the coordinates of, and the voltages at, terminals E
and GH remain unchanged. Identical current flow patterns
would be obtained if we simply set the voltage at F’ equal to
VR + IFρ2(b

′ − b)/(Wh2) where IF is the total current flowing
through terminal F (or F’). Thus, for the Cartesian thin film
model shown in figure 1, we have generalized the analysis
presented in this paper, further, to the non-symmetric geometry
where region I need not be placed at the centre of region II.
Our model then provides a substantial generalization of the
transmission line model and the Kennedy–Murley model that
were extensively used in thin film analysis.
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Figure 12. R̄c for circular thin film contact (figure 2) as a function
of a/h2, for ρ1/ρ2 = 0.01 (a), 0.1 (b), 1 (c), 10 (d) and 100 (e),
with the effect of h1/a displayed in each sub-figure. The solid lines
represent the exact calculations (equation (C6)), symbols represent
MAXWELL 2D simulation, the dotted lines represent equation (C7)
and the dashed lines represent equation (C10).
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Appendix A. General solution to the Cartesian even
case (figure 2)

The formulation follows that of [12, 13]. Referring to figure 2,
a voltage of +V0 is applied at both the right and left terminals.
The solutions to Laplace’s equation are [13],

�+(y, z) = A0(z − h1) +
∞∑

n=1

An cos
(nπy

a

)

× sinh

(
nπ

z − h1

a

)
, 0 < z < h1, |y| ∈ (0, a),

�−(y, z) = V0 +
∞∑

n=1

Bn cos

((
n − 1

2

)
π

y

b

)

×cosh
[(

n − 1
2

)
π z+h2

b

]
sinh

((
n − 1

2

)
π h2

b

) , −h2 < z < 0, |y| ∈ (0, b),

(A1)

where �+ and �− are the electrical potential in regions BCHG
and BCEF, respectively, and An and Bn are the coefficients that
need to be solved.

At the interface z = 0, from the continuity of electrical
potential and current density, we have the following boundary
conditions:

�+ = �−, z = 0, |y| ∈ (0, a), (A2a)

1

ρ1

∂�+

∂z
= 1

ρ2

∂�−
∂z

, z = 0, |y| ∈ (0, a), (A2b)

∂�−
∂z

= 0, z = 0, |y| ∈ (a, b). (A2c)

From equations (A2a)–(A2c), we eliminate coefficient An in
favour of Bn to obtain

−An sinh

(
nπ

h1

a

)
=

∞∑
m=1

gmnBm coth

(
(m − 1/2) π

h2

b

)
,

(A3a)

ρ1

ρ2
(n − 1/2)Bn +

∞∑
m=1

γnmBm coth

(
(m − 1/2)π

h2

b

)

= 2

π

sin((n − 1/2)πa/b)

(n − 1/2)πa/b
, n = 1, 2, 3 . . . , (A3b)

where

γnm = γmn =
∞∑
l=1

lgnlgml coth

(
lπh1

a

)
,

gmn = 2

a

∫ a

0
dy cos

(
(m − 1/2)πy

b

)
cos

(nπy

a

)
. (A4)

In deriving equation (A3b), we have assumed that aA0 = +1.
The infinite matrix in equation (A3b) can be solved directly
for Bn with convergence guaranteed, from which An follows

9
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in equation (A3a). See the appendices of [12, 13] for the proof
of convergence.

The total current flowing to the gate GH is (figure 2)

I = 2W

∫ a

0

1

ρ1

∂�+

∂z

∣∣∣∣
z=0

dy = 2W

ρ1
, (A5)

where we have used equation (A1) and aA0 = +1, and W

is the channel width in the third, ignorable dimension that is
perpendicular to the paper. The terminal voltage V0 may be
expressed in terms of Bn as

V0 = −h1

a
−

∞∑
n=1

Bn coth

(
(n − 1/2)π

h2

b

)

× sin ((n − 1/2)πa/b)

(n − 1/2)πa/b
. (A6)

The contact resistance for this even case, Rc(E), is defined
as the difference between the resistance from EF to GH,
R = V0/I , and the bulk resistance exterior to ABCD, Ru =
ρ1h1/2aW + ρ2(b − a)/2h2W ,

Rc(E) ≡ ρ2

4πW
R̄c(E) = V0

I
− Ru,

R̄c(E) = R̄c(E)

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)

= 2π
ρ1

ρ2

∞∑
n=1

Bn coth

((
n − 1

2

)
π

h2

b

)

× sin
((

n − 1
2

)
π a

b

)
(
n − 1

2

)
π a

b

− 2π
b − a

h2
. (A7)

Equation (A7) is the exact expression for the contact resistance
of Cartesian thin film of the even case (figure 2) for arbitrary
values of a, b (b > a), h1, h2 and ρ1/ρ2. In equation (A7),
Bn is solved from equation (A3b). Equation (A7) appears in
equation (1) of the main text.

In the limit h1/a → ∞, R̄c(E) according to the exact
theory (A7) is plotted in figure 4 of the main text. The exact
theory in figure 4 may be fitted by equation (A8), which is more
accurate and elegant than the fitting formula given in [13],

R̄c(E)

(
a

h2
,
ρ1

ρ2

)
∼= R̄c(E)

∣∣
ρ1
ρ2

→0 +
�(a/h2)

2

× 2ρ1

ρ1 + β(a/h2)ρ2
, h1/a → ∞, (A8)

where

� (a/h2) = R̄c(E)
∣∣
ρ1/ρ2→∞ − R̄c(E)

∣∣
ρ1/ρ2→0 , (A9)

β (a/h2) =
R̄c(E)

∣∣
ρ1/ρ2→∞ − R̄c(E)

∣∣
ρ1/ρ2=1

R̄c(E)
∣∣
ρ1/ρ2=1 − R̄c(E)

∣∣
ρ1/ρ2→0

, (A10)

R̄c(E)
∣∣

ρ1
ρ2

→0 = 2π
a

h2
− 4 ln

[
sinh

(
π

2

a

h2

)]
, (A11)

R̄c(E)
∣∣

ρ1
ρ2

=1 = 4 ln

[
1

4

(
a

h2
+

h2

a

)]
+ 4

(
h2

a

)
tan−1

(
a

h2

)

+ 4

(
a

h2

)
tan−1

(
h2

a

)
, (A12)

R̄c(E)
∣∣

ρ1
ρ2

→∞

∼=




R̄c(E)
∣∣

ρ1
ρ2

→0 + 0.5355(a/h2)
2

+ 0.006594(a/h2) + 0.4546, a/h2 � 1;
2
3π(a/h2) + 2.094(h2/a)

− 0.2429(h2/a)2, a/h2 > 1.

(A13)

The fitting formula (A8) is expressed in terms of R̄c(E)

in the three important limits: ρ1/ρ2 = 0, 1, and infinity.
Equations (A11) and (A12) may be obtained from Hall [18],
whereas equation (A13) is an excellent approximation to the
exact expression, given by equation (A10) of [13],

R̄c(E)
∣∣

ρ1
ρ2

→∞ = 4
∞∑

n=1

coth
[(

n − 1
2

)
π h2

b

]
n − 1

2

sin2 [(
n − 1

2

)
π a

b

]
[(

n − 1
2

)
π a

b

]2

− 2π
b − a

h2
. (A14)

As h2 → 0, equation (A14) yields the asymptotic limit
(2π/3)(a/h2), which is displayed in equation (A13). See
appendix C of [16] for a mathematical proof of this asymptotic
limit. From comment (3) in the lead paragraph of section 2,
equation (A11) is also the expression in the limit h1/a → 0,

R̄c(E) = 2π
a

h2
− 4 ln

[
sinh

(
π

2

a

h2

)]
, h1/a → 0.

(A15)

Appendix B. General solution to the Cartesian odd
case (figure 3)

In figure 3, we set the voltage V ′
0 = 1 for this appendix where

we calculate the contact resistance and the ratios of various
current components. The solutions of Laplace’s equation are

�+(y, z) =
∞∑

n=1

An sin

((
n − 1

2

)
π

y

a

)

× sinh

((
n − 1

2

)
π

z − h1

a

)
,

0 < z < h1, |y| ∈ (0, a),

�−(y, z) = y

b
+

∞∑
n=1

Bn sin
(nπy

b

) cosh[(z + h2)nπ/b]

sinh(nπh2/b)
,

−h2 < z < 0, |y| ∈ (0, b), (B1)

where �+ and �− are the electrical potential in regions BCHG
and BCEF, respectively, and An and Bn are the coefficients that
need to be solved.

At the interface z = 0, from the continuity of electrical
potential and current density, we have the following boundary
conditions:

�+ = �−, z = 0, |y| ∈ (0, a), (B2a)

1

ρ1

∂�+

∂z
= 1

ρ2

∂�−
∂z

, z = 0, |y| ∈ (0, a), (B2b)

∂�−
∂z

= 0, z = 0, |y| ∈ (a, b). (B2c)
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From equations (B1) and (B2a), the coefficient An is expressed
in terms of Bn,

−An sinh

(
(n − 1/2)πh1

a

)
= 2

a

b

sin((n − 1/2)π)

((n − 1/2)π)2

+
∞∑

m=1

Bm coth

(
mπh2

b

)
gmn, n � 1

gmn = 1

a

∫ a

−a

dy sin
(mπy

b

)
sin

(
(n − 1/2)πy

a

)
. (B3)

Combining equations (B2b), (B2c) and (B3), we obtain

ρ1

ρ2
nBn +

∞∑
m=1

γnmBm coth

(
mπh2

b

)
= − 2

π

a

b
Dn,

n = 1, 2, 3 . . . , (B4)

where

γnm = γmn =
∞∑
l=1

(l − 1/2) gnlgml coth

(
(l − 1/2)πh1

a

)
,

Dn =
∞∑
l=1

gnl coth

(
(l − 1/2)πh1

a

)
sin ((l − 1/2)π)

(l − 1/2)π
, (B5)

in which gnl and gml are in the form of the last part in
equation (B3). The infinite matrix (B4) can be solved directly
for Bn with convergence guaranteed. See the appendices
of [12, 13] for the proof of convergence.

The total current from the right terminal, F, is

IF = W

∫ 0

−h2

1

ρ2

∂�−
∂y

∣∣∣∣
y=b

dz = W

ρ2

(
h2

b
+

∞∑
n=1

Bn cos(nπ)

)
,

(B6)

where we have used equation (B1). This current is split
into three parts (GJ, JO, OK) when it reaches the grounded
boundary GJK in figure 3,

IGJ = W

∫ a

0

1

ρ1

∂�+

∂z

∣∣∣∣
z=h1

dy = W

ρ1

∞∑
n=1

An,

IJO = W

∫ h1

0

1

ρ1

∂�+

∂y

∣∣∣∣
y=0

dz

= W

ρ1

∞∑
n=1

An

[
1 − cosh

(
(n − 1/2)πh1

a

)]
,

IOK = W

∫ 0

−h2

1

ρ2

∂�−
∂y

∣∣∣∣
y=0

dz = W

ρ2

(
h2

b
+

∞∑
n=1

Bn

)
, (B7)

where Bn and An are solved from equations (B4) and (B3),
respectively.

The contact resistance for this odd case, Rc(O), is defined
as the difference between the resistance from terminal F to the
grounded boundary GJK, R = 1/IF, and the bulk resistance
between AB and terminal F, Ru = ρ2(b − a)/h2W ,

Rc(O) ≡ ρ2

4πW
R̄c(O) = 1

IF
− ρ2(b − a)

h2 × W
,

R̄c(O) = R̄c(O)

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)

= 4π

h2
b

+
∞∑

n=1
Bn cos(nπ)

− 4π
b − a

h2
. (B8)

Equation (B8) is the exact expression for the contact
resistance of Cartesian thin film of the odd case (figure 3)
for arbitrary values of a, b (b > a), h1, h2 and ρ1/ρ2. In
equation (B8), Bn is solved from equation (B4). Equation (B8)
appears in equation (2) of the main text.

In the limit h1/a → ∞, R̄c(O) according to the exact
theory (B8) is plotted in figure 7 of the main text. The curves
in figure 7 may be fitted by this formula,

R̄c(O) = R̄c(O)
∣∣
ρ1/ρ2→0 +

� (a/h2)

2
× 2ρ1

ρ1 + β (a/h2) ρ2
,

(B9)

� (a/h2) = R̄c(O)
∣∣
ρ1/ρ2→∞ − R̄c(O)

∣∣
ρ1/ρ2→0 ,

β (a/h2) =
R̄c(O)

∣∣
ρ1/ρ2→∞ − R̄c(O)

∣∣
ρ1/ρ2=1

R̄c(O)
∣∣
ρ1/ρ2=1 − R̄c(O)

∣∣
ρ1/ρ2→0

, (B10)

where R̄c(O)|ρ1/ρ2→∞ and R̄c(O)|ρ1/ρ2→0 are given in
equations (3) and (4) in the main text, respectively, and
R̄c(O)|ρ1/ρ2=1 is given by

R̄c(O)|ρ1/ρ2=1 = 4π
a

h2
+ 4 ln

(
a2

h2
2

+ 1

)
− 8

a

h2
tan−1

(
a

h2

)
,

(B11)

which is derived by Hall using conformal mapping (see
figure 33 and equation (48) of Hall’s 1967 paper [18]). This
scaling law, equation (B9), is also shown in figure 7, which
compares extremely well with the exact theory, for the range
of 0 < ρ1/ρ2 < ∞ and a/h2 � 50.

Appendix C. General solution to the cylindrical case
(figure 2)

The solutions of Laplace’s equation in the cylindrical geometry
are [13]

�+(r, z) = A0(z − h1) +
∞∑

n=1

AnJ0 (αnr) sinh[αn(z − h1)],

0 < z < h1, r ∈ (0, a);

�−(r, z) = V0 +
∞∑

n=1

Bn

cosh((z + h2)λn/b)

sinh(h2λn/b)
J0

(
λnr

b

)
,

−h2 < z < 0, r ∈ (0, b), (C1)

where �+ and �− are the electrical potential in regions
BCHG and BCEF, respectively, (figure 2), αn and λn satisfy
J1(αna) = J0(λn) = 0, J0(x) and J1(x) is, respectively, the
Bessel function of order zero and one, and An and Bn are the
coefficients that need to be solved.

At the interface z = 0, from the continuity of electrical
potential and current density, we have the following boundary
conditions:

�+ = �−, z = 0, r ∈ (0, a), (C2a)

1

ρ1

∂�+

∂z
= 1

ρ2

∂�−
∂z

, z = 0, r ∈ (0, a), (C2b)

∂�−
∂z

= 0, z = 0, r ∈ (a, b). (C2c)
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From equations (C1) and (C2a), the coefficient An is
expressed in terms of Bn,

−A0h1 =
∞∑

n=1

Bn coth

(
λnh2

b

)
2J1 (λna/b)

λna/b
+ V0, (C3a)

− sinh(αnh1)An =
∞∑

m=1

Bm coth

(
λmh2

b

)
gmn,

gmn = 2

a2J 2
0 (αna)

∫ a

0
r drJ0 (αnr) J0

(
λmr

b

)
, n � 1.

(C3b)

Combining equations (C2b), (C2c) and (C3b), we obtain

ρ1

ρ2

b

a
λnJ

2
1 (λn)Bn +

∞∑
m=1

γnmBm coth

(
λmh2

b

)
= 2J1(λna/b)

λna/b
,

n = 1, 2, 3 . . . , (C4)

where

γnm = γmn =
∞∑
l=1

gnlgmlαlaJ 2
0 (αla) coth (αlh1), (C5)

in which gnl and gml are in the form of the last part in
equation (C3b). In deriving equation (C4), we have set
aA0 = 1 for simplicity.

The total resistance from the circular rim EF to
GH is R = (�F − �G)/I = V0/I , where I =∫ a

0 ((1/ρ1)(∂�+/∂z)|z=0)2πr dr = πa/ρ1 is the total current
in the conducting channel. The contact resistance, Rc,
is the difference between the total resistance R and bulk
resistance in the region exterior to ABCD, Ru = ρ1h1/πa2 +
(ρ2/2πh2) ln(b/a). We find

Rc = |V0 − 0|
I

− Ru = ρ2

4a
R̄c,

R̄c

(
a

b
,
h1

a
,

a

h2
,
ρ1

ρ2

)
= 8

π

ρ1

ρ2

∞∑
n=1

Bn coth(λnh2/b)
J1(λna/b)

λna/b

− 2a

πh2
ln

(
b

a

)
, (C6)

which is the exact expression for the circular thin film contact
resistance with dissimilar materials for arbitrary values of a,
b (b > a), h1, h2 and ρ1/ρ2. It appears in equation (5) of the
main text. In equation (C6), Bn is solved from equation (C4).

In the limit h1/a → ∞, equations (C4)–(C6) become
identical to equations (B6)–(B8) of [13]. The exact theory of
R̄c for the cylindrical case was fitted by equation (C7), which
is more accurate and elegant than the fitting formula given
in [13],

R̄c

(
a

h2
,
ρ1

ρ2

)
∼= R̄c(a/h2)

∣∣
ρ1
ρ2

→0 +
�(a/h2)

2

× 2ρ1

ρ1 + β(a/h2)ρ2
, h1/a → ∞, (C7)

where

R̄c(a/h2)
∣∣
ρ1/ρ2→0 =




1 − 2.2968(a/h2) + 4.9412(a/h2)
2

− 6.1773(a/h2)
3

+3.811(a/h2)
4 − 0.8836(a/h2)

5,

0 � a/h2 � 1;
4 ln 2/π2 + 0.055(h2/a)

+ 0.0541(h2/a)2,

1 < a/h2 < ∞,

(C8a)

R̄c(a/h2)
∣∣
ρ1/ρ2→∞ =




1.0808 − 2.2895(a/h2)

+ 4.9596(a/h2)
2 − 6.1773(a/h2)

3

+3.811(a/h2)
4 − 0.8836(a/h2)

5,

0 � a/h2 � 1;
1

2π
(a/h2) + 0.4208(h2/a)

−0.0925(h2/a)2, 1 < a/h2 < ∞,

(C8b)

�(a/h2) = R̄c(a/h2)
∣∣
ρ1/ρ2→∞ − R̄c(a/h2)

∣∣
ρ1/ρ2→0 ,

β(a/h2) = 0.0016(a/h2)
2 + 0.0949(a/h2) + 0.6983,

0.001 � a/h2 < 10. (C9)

As h2 → 0, the asymptotic limits displayed in
equations (C8a) and (C8b) are demonstrated in [16]. From
comment (3) in the lead paragraph of section 2, equation (C8a)
is also the expression in the limit h1/a → 0,

R̄c(a/h2)
∣∣
h1/a→0 =




1 − 2.2968(a/h2) + 4.9412(a/h2)
2

− 6.1773(a/h2)
3

+3.811(a/h2)
4 − 0.8836(a/h2)

5,

0 � a/h2 � 1;
4 ln 2/π2 + 0.055(h2/a)

+ 0.0541(h2/a)2,

1 < a/h2 < ∞.

(C10)
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